cho tứ giác ABCD có bốn đỉnh A, B, C, D nằm trên đường tròn (O;R) có AB vuông góc với BD. kẻ đường kính CE.
c/m AB^2 +CD^2 +BC^2 +AD^2= 8R^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác MAD và MCD ( M chung ; MAD = MCB góc nội tiếp cùng chắn cung BD ) => tỉ số đồng dạng
=> MA.MB = MC . MD
105o vi goc đối cua adc=50+25=75o
nên góc adc=180-75=105 đúng 100%
số đo cung AB=góc AOB=80
số đo cung BC= góc BOC=130
góc ADC=số đo cung AC chia 2=(80+130)/2=105
a: Xét tứ giác ABCD có \(\widehat{A}+\widehat{C}=180^0\)
nên ABCD là tứ giác nội tiếp
hay A,B,C,D cùng nằm trên một đường tròn
b: Tâm là trung điểm của AC