K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2022

Từ C kẻ đường cao CH xuống đáy AB

\(cotA+cotB=\dfrac{AH}{CH}+\dfrac{BH}{CH}=\dfrac{AB}{CH}\)

Mà \(cotA+cotB=\dfrac{a^2+b^2}{2S}=\dfrac{AC^2+BC^2}{AB.CH}\)

=> \(\dfrac{AB}{CH}=\dfrac{AC^2+BC^2}{AB.CH}\)

=> AB2 = AC2 + BC2

=> tam giác ABC vuông tại C

 

NV
20 tháng 1 2022

\(cotA+cotB=\dfrac{cosA}{sinA}+\dfrac{cosB}{sinB}=\dfrac{\dfrac{b^2+c^2-a^2}{2bc}}{\dfrac{2S}{bc}}+\dfrac{\dfrac{a^2+c^2-b^2}{2ac}}{\dfrac{2S}{ac}}=\dfrac{b^2+c^2-a^2}{4S}+\dfrac{a^2+c^2-b^2}{4S}=\dfrac{c^2}{2S}\)

Mà theo giả thiết \(cotA+cotB=\dfrac{a^2+b^2}{2S}\)

\(\Rightarrow\dfrac{a^2+b^2}{2S}=\dfrac{c^2}{2S}\Rightarrow a^2+b^2=c^2\Rightarrow\Delta ABC\) vuông tại A theo Pitago đảo

\(AB=\sqrt{\dfrac{BC^2}{2}}=\sqrt{\dfrac{9a^2}{2}}=\sqrt{\dfrac{18a^2}{4}}=\dfrac{3a\sqrt{2}}{2}\)

\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{18a^2}{4}:2=\dfrac{18a^2}{8}=\dfrac{9a^2}{4}\)

25 tháng 2 2021

đề bạn sai rồi 

 

20 tháng 1 2022

Sao cho cot A +cot B= a²+b²/2S

20 tháng 1 2022

Giúp iem với iem tặng 3sp

Bài 1:

a: Xét ΔBAC vuông tại A có 

\(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{C}=60^0\)

Xét ΔBAC vuông tại A có 

\(AB=BC\cdot\sin60^0\)

\(\Leftrightarrow BC=4\sqrt{3}\left(cm\right)\)

\(\Leftrightarrow AC=2\sqrt{3}\left(cm\right)\)

27 tháng 6 2021

BC=9cm chứ?

`S_{DeltaABC}=(AH.BC)/2=(12.9)/2=6.9=54cm^2`

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow CH=\dfrac{12^2}{9}=\dfrac{144}{9}=16\left(cm\right)\)

Diện tích tam giác ABC là:

\(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{12\cdot25}{2}=\dfrac{300}{2}=150\left(cm^2\right)\)

Câu 1: D

Câu 2: A

2 tháng 3 2022

1D

2A

14 tháng 5 2022

a/ Ta có

\(BC=5xBM\Rightarrow BM=\dfrac{1}{5}xBC\Rightarrow CM=BC-BM=BC-\dfrac{1}{5}xBC=\dfrac{4}{5}xBC\)

\(AN=\dfrac{3}{4}xAC\Rightarrow CN=AC-AN=AC-\dfrac{3}{4}xAC=\dfrac{1}{4}xAC\)

Hai tg AMC và tg ABC có chungg đường cao từ A->BC nên

\(\dfrac{S_{AMC}}{S_{ABC}}=\dfrac{CM}{BC}=\dfrac{4}{5}\Rightarrow S_{AMC}=\dfrac{4}{5}xS_{ABC}\)

Hai tg ACM và tg MNC có chung đường cao từ M->AC nên

\(\dfrac{S_{MNC}}{S_{AMC}}=\dfrac{CN}{AC}=\dfrac{1}{4}\Rightarrow S_{MNC}=\dfrac{1}{4}xS_{AMC}=\dfrac{1}{4}x\dfrac{4}{5}xS_{ABC}=\dfrac{1}{5}xS_{ABC}=\dfrac{1}{5}x35=7cm^2\)

b/

\(S_{AMN}=S_{AMC}-S_{MNC}=\dfrac{4}{5}xS_{ABC}-\dfrac{1}{5}xS_{ABC}=\dfrac{3}{5}xS_{ABC}\)

Ta có

\(NP=\dfrac{2}{3}xNM\Rightarrow MP=NM-NP=NM-\dfrac{2}{3}xNM=\dfrac{1}{3}xNM\)

Hai tg AMP và tg AMN có chung đường cao từ A->NM nên

\(\dfrac{S_{AMP}}{S_{AMN}}=\dfrac{MP}{NM}=\dfrac{1}{3}\Rightarrow S_{AMP}=\dfrac{1}{3}xS_{AMN}=\dfrac{1}{3}x\dfrac{3}{5}xS_{ABC}=\dfrac{1}{5}xS_{ABC}\)

Ta có

\(S_{ABM}=S_{ABC}-S_{ACM}=S_{ABC}-\dfrac{4}{5}xS_{ABC}=\dfrac{1}{5}xS_{ABC}\)

\(\Rightarrow S_{AMP}=S_{ABM}\)