K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2022

Từ C kẻ đường cao CH xuống đáy AB

\(cotA+cotB=\dfrac{AH}{CH}+\dfrac{BH}{CH}=\dfrac{AB}{CH}\)

Mà \(cotA+cotB=\dfrac{a^2+b^2}{2S}=\dfrac{AC^2+BC^2}{AB.CH}\)

=> \(\dfrac{AB}{CH}=\dfrac{AC^2+BC^2}{AB.CH}\)

=> AB2 = AC2 + BC2

=> tam giác ABC vuông tại C

 

NV
20 tháng 1 2022

\(cotA+cotB=\dfrac{cosA}{sinA}+\dfrac{cosB}{sinB}=\dfrac{\dfrac{b^2+c^2-a^2}{2bc}}{\dfrac{2S}{bc}}+\dfrac{\dfrac{a^2+c^2-b^2}{2ac}}{\dfrac{2S}{ac}}=\dfrac{b^2+c^2-a^2}{4S}+\dfrac{a^2+c^2-b^2}{4S}=\dfrac{c^2}{2S}\)

Mà theo giả thiết \(cotA+cotB=\dfrac{a^2+b^2}{2S}\)

\(\Rightarrow\dfrac{a^2+b^2}{2S}=\dfrac{c^2}{2S}\Rightarrow a^2+b^2=c^2\Rightarrow\Delta ABC\) vuông tại A theo Pitago đảo

20 tháng 1 2022

Sao cho cot A +cot B= a²+b²/2S

20 tháng 1 2022

Giúp iem với iem tặng 3sp

9 tháng 4 2022

`Answer:`

a) \(a^2=b^2+c^2-2bc\cos A\)

\(2S=bc.\sin A\)

\(\Rightarrow2bc=\frac{4S}{\sin A}\)

\(\Rightarrow a^2=b^2+c^2-\frac{4S\cos A}{\sin A}=b^2+c^2-4S\cot A\)

\(\Rightarrow\cot A=\frac{b^2+c^2-a^2}{4S}\)

NV
24 tháng 3 2021

\(\Leftrightarrow\dfrac{b^2+c^2-a^2}{2abc}+\dfrac{a^2+c^2-b^2}{2abc}+\dfrac{a^2+b^2-c^2}{2abc}=\dfrac{a}{bc}\)

\(\Leftrightarrow\dfrac{a^2+b^2+c^2}{2abc}=\dfrac{a}{bc}\)

\(\Leftrightarrow a^2+b^2+c^2=2a^2\)

\(\Leftrightarrow a^2=b^2+c^2\)

\(\Rightarrow\) Tam giác vuông tại A theo Pitago đảo

19 tháng 2 2016

15/25

 

NV
14 tháng 2 2020

a/ Ta có: \(\left\{{}\begin{matrix}cosB=\frac{a^2+c^2-b^2}{2ac}\\S=\frac{1}{2}ac.sinB\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}cosB=\frac{a^2+c^2-b^2}{2ac}\\sinB=\frac{2S}{ac}\end{matrix}\right.\)

\(\Rightarrow cotB=\frac{cosB}{sinB}=\frac{\left(a^2+c^2-b^2\right).ac}{2ac.2S}=\frac{a^2+c^2-b^2}{4S}\)

b/ Tương tự: \(cotA=\frac{b^2+c^2-a^2}{4S}\) ; \(cotC=\frac{a^2+b^2-c^2}{4S}\)

\(\Rightarrow cotA+cotB+cotC=\frac{a^2+b^2+c^2}{4S}\)

\(AB=\sqrt{\dfrac{BC^2}{2}}=\sqrt{\dfrac{9a^2}{2}}=\sqrt{\dfrac{18a^2}{4}}=\dfrac{3a\sqrt{2}}{2}\)

\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{18a^2}{4}:2=\dfrac{18a^2}{8}=\dfrac{9a^2}{4}\)