K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2015

 

+ n =0

 => UCLN(5;7) =1

23 tháng 5 2016

Gọi UCLN(2n +5; 3n +7) là d \(\left(d\ge1\right)\)

=> 2n +5 chia hết cho d ; 3n+7 chia hết cho d

=> 3n+7 - (2n+5) = n + 2 chia hết cho d 

=> 2n+4) chia hết cho d

mà 2n+5 = (2n+4) +1 chia hết cho d

=> 1 chia hết cho d 

=> \(d\le1\)mà \(d\ge1\)=> d = 1

Vậy UCLN(2n+5 ; 3n+7) = 1

14 tháng 11 2016

Gọi d là ƯCLN(n+3,2n+5)

\(\Rightarrow\hept{\begin{cases}n+3⋮d\\2n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+3\right)⋮d\\2n+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+6⋮d\\2n+5⋮d\end{cases}}}\)

=> (2n + 6) - (2n + 5) \(⋮\)d

=> 1 \(⋮\)d

=> d = 1

=> ƯCLN(n+3,2n+5) = 1

=> n + 3 và 2n + 5 là 2 số nguyên tố cùng nhau

14 tháng 11 2016

giúp mình với mình đg gấp lắm

 

 

14 tháng 11 2016

Gọi d là ƯC(n+3;2n+5)

=> 2(n+3) - (2n+5) chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy ........

21 tháng 3 2020

21 tháng 3 2020

Bạn tham khảo nha, không hiểu thì hỏi mình

24 tháng 5 2016

Gọi UCLN(2n +5; 3n +7) là d \(\left(d\ge1\right)\)

=> 2n +5 chia hết cho d ; 3n+7 chia hết cho d

=> 3n+7 - (2n+5) = n + 2 chia hết cho d 

=> 2n+4) chia hết cho d

mà 2n+5 = (2n+4) +1 chia hết cho d

=> 1 chia hết cho d 

=> \(d\le1\)mà \(d\ge1\)=> d = 1

Vậy UCLN(2n+5 ; 3n+7) = 1

24 tháng 5 2016

Gọi d làƯCLN (2n + 5; 3n + 7)

=> 2n + 5  chia hết cho d => 3.(2n + 5) = 6n + 15 chia hết cho d (1) 

=> 3n + 7 chia hết cho d => 2.(3n + 7) = 6n + 14 chia hết cho d (2)

Từ (1) và (2) => (6n + 15) - (6n + 14) = 6n + 15 - 6n - 14 = 1 chia hết cho d

=> d = 1

=>ƯWCLN (2n + 5; 3n + 7) = 1 (Đpcm).

21 tháng 2 2017

Để: \(\frac{2n+3}{3n+5}\)là phân số tối giản thì ƯCLN(2n+3;3n+5)=1

Gọi ƯCLN(2n+3;3n+5) = d

Ta có: 2n+3 chia hết cho d => 3(2n+3) chia hết cho d hay 6n+9 chia hết cho d              (1)

Mặt khác: 3n+5 chia hết cho d => 2(3n+5) chia hết cho d hay 6n+10 chia hết cho d            (2)

Từ (1) và (2) => (6n+10)-(6n+9) chia hết cho d => 1 chia hết cho d  => d=1 hoặc d=-1

Do: d= ƯCLN(2n+3;3n+5)   => d=1  => \(\frac{2n+3}{3n+5}\)là phân số tối giản  => đpcm

10 tháng 12 2018

gọi UCLN(2n+3, 3n+5) là d 
ta có 2n+5 chia hết cho d => 3(2n+3) chia hết cho d <=> 6n+15 chia hết cho d(1) 
3n+5 chia hết cho d => 2(3n+5) chia hết cho d <=> 6n+14 chia hết cho d(2) 
=> (6n+15) -( 6n+14) chia hết cho d hay 1 chia hết cho d --> 2n+3, 3n+5 ngtố cùng nhau(đpcm)

26 tháng 4 2018

gọi d là ƯC(2n+1; 3n+2)     (1)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+3\right)-\left(6n+4\right)⋮d\)

\(\Rightarrow6n+3-6n-4⋮d\)

\(\Rightarrow\left(6n-6n\right)-\left(4-3\right)⋮d\)

\(\Rightarrow0-1⋮d\)

\(\Rightarrow-1⋮d\)

\(\Rightarrow d=\pm1\)    (2)

\(\left(1\right)\left(2\right)\RightarrowƯC\left(2n+1;3n+2\right)=\pm1\)

=> 2n+1/3n+2 là phân số tối giản

26 tháng 4 2016

Gọi d là ƯC(2n+1 và 3n+2)

Ta có

2n+1 chia hết cho d => 6n+3 chia hết cho d

3n+ 2 chia hết cho d => 6n+4 chia hết cho d

  => 6n+4 - 6n+3 chia hết cho d => 1 chia hết cho d

=> 2n+1/3n+2 là phân số tối giản

=> đpcm

26 tháng 4 2016

Gọi d là ước chung lớn nhất của 2n+1 và 3n+2

       2n+1 chia hết cho d

=)    ---------------------------------------

         3n+2 chia hết cho d

               6n+3 chia hết cho d

=)--------------------------------------------------

              6n+4 chia hết cho d

=)1 chia hết cho d.Mà d thuộc N*=)d=1

=)UCLN(2n+2;3n+2)=1

Vậy phân số.................là phân số tối giản (ĐPCM)
Nhớ k