K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2018

gọi UCLN(2n+3, 3n+5) là d 
ta có 2n+5 chia hết cho d => 3(2n+3) chia hết cho d <=> 6n+15 chia hết cho d(1) 
3n+5 chia hết cho d => 2(3n+5) chia hết cho d <=> 6n+14 chia hết cho d(2) 
=> (6n+15) -( 6n+14) chia hết cho d hay 1 chia hết cho d --> 2n+3, 3n+5 ngtố cùng nhau(đpcm)

10 tháng 11 2016

a)Gọi ƯCLN(3n+5;2n+3)=d

=> 3n+5 chia hết cho d => 2(3n+5) chia hết cho d hay 6n+10 chia hết cho d

=>2n+3 chia hết cho d => 3(2n+3) chia hết cho d=> 6n+9 chia hết cho d

=>6n+10-(6n+9) chia hết cho d

=>1 chia hết cho d hay d=1

Do đó, ƯCLN(3n+5;2n+3)=1

Vậy 3n+5; 2n+3 là hai số nguyên tố cùng nhau

b)Gọi ƯCLN(5n+2;7n+3)=a

=>5n+2 chia hết cho a => 7(5n+2) chia hết cho a=> 35n+14 chia hết cho a

=>7n+3 chia hết cho a =>5(7n+3) chia hết cho a=> 35n+15 chia hết cho a

=> 35n+15-(35n+14) chia hết cho a

=>1 chia hết cho a hay a=1

Do đó, ƯCLN(5n+2;7n+3)=1

Vậy 5n+2 và 7n+3 là hai số nguyên tố cùng nhau

2 tháng 12 2017

a) Gọi d là ƯCLN(3n+5, 2n+3), d \(\in\)N*

\(\Rightarrow\hept{\begin{cases}3n+5⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n+5\right)⋮d\\3\left(2n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+10⋮d\\6n+9⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(3n+5,2n+3\right)=1\)

\(\Rightarrow\) 3n+5 và 2n+3 là hai số nguyên tố cùng nhau.

b) Gọi d là ƯCLN(5n+2,7n+3), d \(\in\)N*

\(\Rightarrow\hept{\begin{cases}5n+2⋮d\\7n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}7\left(5n+2\right)⋮d\\5\left(7n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}35n+14⋮d\\35n+15⋮d\end{cases}}}\)

\(\Rightarrow\left(35n+15\right)-\left(35n+14\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(5n+2,7n+3\right)=1\)

\(\Rightarrow\) 5n+2 và 7n+3 là hai số nguyên tố cùng nhau.

9 tháng 9 2015

Gỉa sử n=3=>3n+1=3.3+1=9+1=10

                      4n+2=4.3+2=12+2=14

mà (10,14)=2

=>Vô lí

Bạn xem lại đề nha.

10 tháng 11 2016

a)Gọi UCLN(3n+5;2n+3)=d

Ta có:

[2(3n+5)]-[3(2n+3)] chia hết d

=>[6n+10]-[6n+9] chia hết d

=>1 chia hết d

=>3n+5 và 2n+3 là 2 số nguyên tố cùng nhau

b)Gọi UCLN(5n+2;7n+3)=d

Ta có:

[5(7n+3)]-[7(5n+2)] chia hết d

=>[35n+15]-[35n+14] chia hết d

=>1 chia hết d

=>5n+2 và 7n+3 là hai số nguyên tố cùng nhau

24 tháng 1 2016

Gọi UCLN(m; mn + 8) là d

=> m chia hết cho d => mn chia hết cho d

và mn + 8 chia hết cho d

Do đó 8 chia hết cho d => d thuộc {1; 2; 4; 8}

Mà m lẻ và m chia hết cho d => d lẻ

Do đó d = 1

=> UCLN(m; mn + 8) = 1

hay 2 số này nguyên tố cùng nhau

Vậy...

13 tháng 7 2018

Gọi d là ước chung của n + 1 và 3n + 4.

Ta có n + 1 ⋮ d nên 3( n+1) ⋮ d hay 3n + 3 ⋮ d

Lại có: 3n + 4 ⋮ d.

Suy ra (3n + 4) - (3n + 3) ⋮ d hay 1 ⋮ d

Do đó, d = 1.

Vậy n + 1 và 3n + 4 là hai số nguyên tố cùng nhau.

16 tháng 8 2017

Gọi d = ƯCLN ( 5n+6 ; n+1 )

=> \(5n+6⋮d;n+1⋮d\)

=> \(5n+6⋮d;5.\left(n+1\right)⋮d\)

=> \(5n+6⋮d;5n+5⋮d\)

=> \(\left(5n+6\right)-\left(5n+5\right)⋮d\)

=> \(5n+6-5n-5⋮d\)

=> \(1⋮d\)

=> \(d=1\)

=> ƯCLN ( 5n+6 ; n+1 )  = 1

=> 5n+6 và n+1 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n ( đpcm )

Vậy bài toán được chứng minh !

              Cbht ❤️

16 tháng 8 2017

Đặt ƯCLN(5n+6,n+1)=d

Ta có: \(n+1⋮d\Rightarrow5\left(n+1\right)⋮d\)\(\Rightarrow5n+5⋮d\)

                                                       mà: \(5n+6⋮d\)

\(\Rightarrow\left(5n+6\right)-\left(5n+5\right)⋮d\)

\(\Rightarrow1⋮d\)\(\Rightarrow d\in\)Ư(1)

Mà d lớn nhất=> d=1 =>ƯCLN(n+1,5n+6)=1 

=>. n+1 và 5n+6 là 2 số nguyên tố cùng nhau\(\forall n\in Z\)