Cho hàm số f(x) có đạo hàm liên tục trên [0;1] thỏa mãn điều kiện:
∫ 0 1 f ' x 2 d x = ∫ 0 1 x + 1 e x . f x d x = e 2 - 1 4 và f(1) = 0 Tính giá trị tích phân I = ∫ 0 1 f x d x
A. e - 1 2
B. e 2 4
C. e - 2
D. e 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
Đặt u = f ( x ) d v = x + 1 e x d x ⇔ d u = f ' x d x v = x e x , khi đó ∫ 0 1 x + 1 e x . f x d x
= x e x . f x 0 1 - ∫ 0 1 x e x . f ' x d x
= e . f 1 - ∫ 0 1 x e x . f ' x d x ⇔ ∫ 0 1 x e x . f ' x d x = - ∫ 0 1 x + 1 e x . f x d x = 1 - e 2 4 .
Xét tích phân ∫ 0 1 f ' x + k . x e x 2 d x = ∫ 0 1 f ' x 2 d x + 2 k . ∫ 0 1 x e x . f ' x d x + k 2 . ∫ 0 1 x 2 e 2 x d x = 0
⇔ e 2 - 1 4 + 2 k . 1 - e 2 4 + k 2 . e 2 - 1 4 = 0 ⇒ k 2 - 2 k + 1 = 0 ⇔ k = 1 ⇒ f ' x = - x . e x .
Do đó f x = ∫ f ' x d x = - ∫ x . e x d x = 1 - x e x + C mà f 1 = 0 ⇒ C = 0 .
Vậy I = ∫ 0 1 f ( x ) d x = ∫ 0 1 ( 1 - x ) e x d x → c a s i o I = e - 2 .
⇒ A = x e x f x 1 0 - ∫ 0 1 x e x f ' x d x = - ∫ 0 1 x e x f ' x d x = 1 - e 2 4
Xét ∫ 0 1 x 2 e 2 x d x = e 2 x 1 2 x 2 - 1 2 x + 1 4 1 0 = e 2 - 1 4
Ta có ∫ 0 1 f ' x 2 d x + 2 ∫ 0 1 x e x f ' x d x + ∫ 0 1 x 2 e 2 x f x d x = 0 ⇔ ∫ 0 1 f ' x + x . e x 2 d x = 0 f ' x + x . e x = 0 , ∀ x ∈ 0 ; 1 d o f ' x + x . e x 2 ≥ 0 , ∀ x ∈ 0 ; 1 ⇒ f ' x = - x e x ⇒ f x = 1 - x e x + C f 1 = 0 ⇒ f x = 1 - x e x ⇒ I = ∫ 0 1 f x d x = ∫ 0 1 1 - x e x d x = 2 - x e x 1 0 = e - 2