K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ABCD có 

M là trung điểm của AC

M là trung điểm của BD

Do đó: ABCD là hình bình hành

Suy ra: AB=CD; AD=BC

b: Xet ΔAMI và ΔCMK có 

\(\widehat{AMI}=\widehat{CMK}\)

MA=MC

\(\widehat{MAI}=\widehat{MCK}\)

Do đó: ΔAMI=ΔCMK

Suy ra: MI=MK

a: Xét ΔABM và ΔCDM có

MA=MC

\(\widehat{AMB}=\widehat{CMD}\)

MB=MD

DO đó; ΔABM=ΔCDM

b: Xét tứ giác ABCD có 

M là trung điểm của AC
M là trung điểm của BD

Do đó:ABCD là hình bình hành

Suy ra: AB//CD

a: Xét ΔAMB và ΔCMD có

MA=MC

\(\widehat{AMB}=\widehat{CMD}\)

MB=MD

Do đó: ΔAMB=ΔCMD

b: Xét tứ giác ABCD có 

M la trung điểm của AC

M là trung điểm của BD

DO đó: ABCD là hình bình hành

Suy ra: AB//CD và AB=CD

29 tháng 2 2020

hình như sai đầu bài r bạn ơi !!

3 tháng 5 2020

Mình ghép câu b vào câu a luôn nhé bạn !! 

a) Xét ΔAMB và ΔCMD có 

      AM=CM( do M là trung điểm của AC)

  Góc AMB= góc CMD(đối đỉnh)

     BM=DM

Suy ra :  ΔAMB=ΔCMD(c.g.c)

\(\Rightarrow\widehat{BAM}=\widehat{DCM}=90^0\)

=> CD//AB

b ) Xét ΔANE và ΔBNC có 

     AN=NB( do N là trung điểm của AB)

 Góc ANE= góc BNC( đối đỉnh)

    NC=NE

=> ΔANE=ΔBNC(c-g-c)

=> AE=BC và góc AEN= góc BCN

=> EA//BC

Chứng minh tương tự ta có AD=BC và AD//BC

=> A;E;D thẳng hàng

Mà AE=AD

=> A là trung điểm của ED

4 tháng 3 2017

a/

Xét tam giác AMB và tam giác CMD, có:

MA=MC (gt)

MB=MD (gt)

\(\widehat{AMB}=\widehat{CMD}\)(đđ)

Do đó: tam giác AMB=tam giác CMD (cgc) 

b/

Vì tam giác AMB=tam giac CMD (cmt) nên AB=CD

Và \(\widehat{BAM}=\widehat{MCD}\)

Mà chúng ở vị trí so le trong 

Vậy AB//CD

25 tháng 2 2017

A B C M D 1 2

Xét ∆ABM và ∆CDM có : 

AM = MC (gt)

\(\widehat{M_1}=\widehat{M_2}\) ( đối đỉnh )

BM = MD (gt)

=> ∆ABM = ∆CDM (c - g - c)

b ) Theo a ) ∆ABM = ∆CDM => \(\widehat{BAM}=\widehat{DCM}\) ( cạnh T/Ư ) Mà lại ở vị trí SLT => AB // CD