cho tam giác nhọn ABC có 2 đường cao AC,BE, CF cắt nhau tại H. M là trung điểm của BC. cm:
a/ AE.AC=AF.AB
b/ góc AEF = góc ABC
c/ AF.AB=AH.AB; AE.AC=AH.AD
d/ DH.DA=DB.DC
e/ H là tâm đường tròn nội tiếp tam giác DEF
f/ DMEF nội tiếp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
=>ΔABE đồng dạng với ΔACF
=>AB/AC=AE/AF
=>AE/AB=AF/AC và AE*AC=AB*AF
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng với ΔABC
=>góc AEF=góc ACB
c; góc AFH=góc AEH=90 độ
=>AFHE nội tiếp (I)
=>IF=IE
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp (M)
=>MF=ME
=>MI là trung trực của EF
=>MI vuông góc EF
a) xét tam giác ABD và tam giác AHF có
góc BAD chung
Góc AFH = góc ADB (=90 độ)
=> tam giác ABD đồng dạng vs tam giác AHF (g.g)
=> AB/AD = AH/AF
=> AF.AD = AH.AD
b) xét tam giác AFC và tam giác AEB có
Góc A chung
Góc AFC = góc AEB (=90 độ)
=> tam giác AFC đồng vs tam giác AEB (g.g)
=> AF/AC = AE/AB
=> AF.AB= AE.AC
a: Xét ΔABD vuông tại D và ΔAHF vuông tại F có
góc FAH chung
=>ΔABD đồng dạng với ΔAHF
=>AB/AH=AD/AF
=>AB*AF=AH*AD
b: Xet ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF
=>AE/AB=AF/AC
=>ΔAEF đồng dạng với ΔABC
c:góc FEC=góc DAC
góc DFC=góc EBC
mà góc DAC=góc EBC
nên góc FEC=goc DFC
=>FC là phân giác của góc EFD
a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔAEB∼ΔAFC(g-g)
b) Ta có: ΔAEB\(\sim\)ΔAFC(cmt)
nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AF\cdot AB=AE\cdot AC\)(đpcm)
Ta có: \(AF\cdot AB=AE\cdot AC\)(cmt)
nên \(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)(cmt)
\(\widehat{FAE}\) chung
Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)
a: Xét ΔAEB vuông ạti E và ΔAFC vuôg tại F có
góc BAE chung
=>ΔAEB đồng dạg vơi ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng vơi ΔABC
`a,` CM `AE.AC=AF.AB`
Xét \(\Delta ABE\) và \(\Delta AFC\) ta có :
\(\left\{{}\begin{matrix}\widehat{A}:chung\\\widehat{AEB}=\widehat{AFC}=90^o\end{matrix}\right.\)
Do đó \(\Delta ABE\sim\Delta AFC\left(g.g\right)\)
`=> (AE)/(AF)=(AB)/(AC)`
`<=>AE .AC = AF .AB->đpcm`
`b,` Xét \(\Delta AEF\) và \(\Delta ABC\) có :
\(\left\{{}\begin{matrix}\widehat{B}:chung\\\dfrac{AE}{AB}=\dfrac{AF}{AC}\left(cmt\right)\end{matrix}\right.\)
Do đó \(\Delta AEF\sim\Delta ABC\left(c.g.c\right)\)
`c,` Xét \(\Delta BFC\) và \(\Delta BDA\) có :
\(\left\{{}\begin{matrix}\widehat{B}:chung\\\widehat{BFC}=\widehat{BDA}=90^o\end{matrix}\right.\)
Do đó \(\Delta BFC\sim\Delta BDA\left(g.g\right)\)
\(\Rightarrow\dfrac{BF}{BD}=\dfrac{BC}{BA}\Rightarrow\dfrac{BF}{BC}=\dfrac{BD}{BA}\)
Xét \(\Delta BHD\) và \(\Delta BCA\) có :
\(\left\{{}\begin{matrix}\widehat{B}:chung\\\dfrac{BF}{BC}=\dfrac{BD}{BA}\left(cmt\right)\end{matrix}\right.\)
Do đó \(\Delta BFD\sim\Delta BCA\left(c.g.c\right)\)
`d,` Xét \(\Delta CDH\) và \(\Delta CFB\) có :
\(\left\{{}\begin{matrix}\widehat{C}:chung\\\widehat{CDH}=\widehat{CFB}=90^o\end{matrix}\right.\)
Do đó \(\Delta CDH\sim\Delta CFB\left(g.g\right)\)
\(\Rightarrow\dfrac{CF}{CD}=\dfrac{CB}{CH}\)
\(\Rightarrow\dfrac{CF}{CB}=\dfrac{CD}{CH}\)
`e,` vì \(\Delta AEF\sim\Delta ABC\) ( cm câu `b` ) nên
\(\widehat{F_2}=\widehat{C}\) ( hai góc tương ứng )
Mà \(\widehat{F_2}=\widehat{F_1}\) ( đối đỉnh )
Nên \(\widehat{C}=\widehat{F_1}\)
Xét \(\Delta IFB\) và \(\Delta IEC\) có :
\(\left\{{}\begin{matrix}\widehat{I}:chung\\\widehat{F_1}=\widehat{C}\left(cmt\right)\end{matrix}\right.\)
Do đó \(\Delta IFB\sim\Delta ICE\left(g.g\right)\)
\(\Rightarrow\dfrac{IF}{IC}=\dfrac{IB}{IE}\)
Vậy `IF.IE=IB.IC->đpcm`
Cậu tự vẽ hình ra đc ko ạ
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc A chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF
b: AE/AF=AB/AC
=>AE/AB=AF/AC
=>ΔAEF đồng dạng với ΔABC
=>góc AEF=góc ABC
c: ΔAEF đồng dạng với ΔABC
=>\(\dfrac{S_{AEF}}{S_{ABC}}=\dfrac{1}{4}\)
=>\(S_{ABC}=4\cdot S_{AEF}\)
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
DO đó: ΔABE\(\sim\)ΔACF
SUy ra: AB/AC=AE/AF
hay \(AB\cdot AF=AE\cdot AC\)
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc EAF chung
Do đó: ΔAEF\(\sim\)ΔABC
Suy ra: \(\widehat{AEF}=\widehat{ABC}\)