K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2023

`a,` CM `AE.AC=AF.AB`

Xét \(\Delta ABE\) và \(\Delta AFC\) ta có :

\(\left\{{}\begin{matrix}\widehat{A}:chung\\\widehat{AEB}=\widehat{AFC}=90^o\end{matrix}\right.\)

Do đó \(\Delta ABE\sim\Delta AFC\left(g.g\right)\)

`=> (AE)/(AF)=(AB)/(AC)`

`<=>AE .AC = AF .AB->đpcm`

`b,` Xét \(\Delta AEF\) và \(\Delta ABC\) có :

\(\left\{{}\begin{matrix}\widehat{B}:chung\\\dfrac{AE}{AB}=\dfrac{AF}{AC}\left(cmt\right)\end{matrix}\right.\)

Do đó \(\Delta AEF\sim\Delta ABC\left(c.g.c\right)\)

`c,` Xét \(\Delta BFC\) và \(\Delta BDA\) có :

\(\left\{{}\begin{matrix}\widehat{B}:chung\\\widehat{BFC}=\widehat{BDA}=90^o\end{matrix}\right.\)

Do đó \(\Delta BFC\sim\Delta BDA\left(g.g\right)\)

\(\Rightarrow\dfrac{BF}{BD}=\dfrac{BC}{BA}\Rightarrow\dfrac{BF}{BC}=\dfrac{BD}{BA}\)

Xét \(\Delta BHD\) và \(\Delta BCA\) có :

\(\left\{{}\begin{matrix}\widehat{B}:chung\\\dfrac{BF}{BC}=\dfrac{BD}{BA}\left(cmt\right)\end{matrix}\right.\)

Do đó \(\Delta BFD\sim\Delta BCA\left(c.g.c\right)\)

`d,` Xét \(\Delta CDH\) và \(\Delta CFB\) có :

\(\left\{{}\begin{matrix}\widehat{C}:chung\\\widehat{CDH}=\widehat{CFB}=90^o\end{matrix}\right.\)

Do đó \(\Delta CDH\sim\Delta CFB\left(g.g\right)\)

\(\Rightarrow\dfrac{CF}{CD}=\dfrac{CB}{CH}\)

\(\Rightarrow\dfrac{CF}{CB}=\dfrac{CD}{CH}\)

`e,` vì \(\Delta AEF\sim\Delta ABC\) ( cm câu `b` ) nên

\(\widehat{F_2}=\widehat{C}\) ( hai góc tương ứng )

Mà \(\widehat{F_2}=\widehat{F_1}\)  ( đối đỉnh )

Nên \(\widehat{C}=\widehat{F_1}\)

Xét \(\Delta IFB\) và \(\Delta IEC\) có :

\(\left\{{}\begin{matrix}\widehat{I}:chung\\\widehat{F_1}=\widehat{C}\left(cmt\right)\end{matrix}\right.\)

Do đó \(\Delta IFB\sim\Delta ICE\left(g.g\right)\)

\(\Rightarrow\dfrac{IF}{IC}=\dfrac{IB}{IE}\)

Vậy `IF.IE=IB.IC->đpcm`

Cậu tự vẽ hình ra đc ko ạ 

12 tháng 4 2023

chăm qá ha :)

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc BAE chung

=>ΔABE đồng dạng với ΔACF

=>AB/AC=AE/AF

=>AE/AB=AF/AC và AE*AC=AB*AF

b: Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc A chung

=>ΔAEF đồng dạng với ΔABC

=>góc AEF=góc ACB

c; góc AFH=góc AEH=90 độ

=>AFHE nội tiếp (I)

=>IF=IE

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp (M)

=>MF=ME

=>MI là trung trực của EF

=>MI vuông góc EF

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{BAE}\) chung

Do đó: ΔAEB∼ΔAFC(g-g)

b) Ta có: ΔAEB\(\sim\)ΔAFC(cmt)

nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AF\cdot AB=AE\cdot AC\)(đpcm)

Ta có: \(AF\cdot AB=AE\cdot AC\)(cmt)

nên \(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)

Xét ΔAEF và ΔABC có

\(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)(cmt)

\(\widehat{FAE}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{FAC}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC(g-g)

b) Ta có: ΔAEB\(\sim\)ΔAFC(cmt)

nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)

hay \(AE\cdot AC=AB\cdot AF\)

Ta có: \(AE\cdot AC=AB\cdot AF\)(cmt)

nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{BAC}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

a: Xet ΔAEB vuông tại E và ΔAFC vuông tại F có

góc A chung

=>ΔAEB đồng dạng với ΔAFC

b: ΔAEB đồng dạng vói ΔAFC

=>AE/AF=AB/AC

=>AE*AC=AB*AF
=>AE/AB=AF/AC

=>ΔAEF đồg dạng vói ΔABC

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc A chung

=>ΔABE đồng dạng với ΔACF

=>AB/AC=AE/AF

=>AB*AF=AE*AC: AB/AE=AC/AF

b: Xet ΔABC và ΔAEF có

AB/AE=AC/AF
góc BAC chung

=>ΔABC đồng dạng với ΔAEF

góc BFC=góc BDA=90 độ

mà góc B chung

nên ΔBFC đồng dạng với ΔBDA

=>BF/BD=BC/BA

=>BF/BC=BD/BA

=>ΔBFD đồng dạng với ΔBCA

 

28 tháng 3 2023

Giúp mình với ạ

26 tháng 3 2023

a) xét tam giác ABD và tam giác AHF có 

góc BAD chung

Góc AFH = góc ADB (=90 độ)

=> tam giác ABD đồng dạng vs tam giác AHF (g.g)

=> AB/AD = AH/AF

=> AF.AD = AH.AD

b) xét tam giác AFC và tam giác AEB có

Góc A chung

Góc AFC = góc AEB (=90 độ)

=> tam giác AFC đồng vs tam giác AEB (g.g)

=> AF/AC = AE/AB

=> AF.AB= AE.AC

a: Xét ΔABD vuông tại  D và ΔAHF vuông tại F có

góc FAH chung

=>ΔABD đồng dạng với ΔAHF

=>AB/AH=AD/AF

=>AB*AF=AH*AD

b: Xet ΔAEB vuông tại E và ΔAFC vuông tại F có

góc EAB chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE*AC=AB*AF

=>AE/AB=AF/AC
=>ΔAEF đồng dạng với ΔABC

c:góc FEC=góc DAC

góc DFC=góc EBC

mà góc DAC=góc EBC

nên góc FEC=goc DFC

=>FC là phân giác của góc EFD

a: Xét ΔAEH vuông tại E và ΔADC vuông tại D có

góc EAH chung

=>ΔAEH đồng dạng với ΔADC

Xét ΔAFH vuông tại F và ΔADB vuông tại D có

góc FAH chung

=>ΔAFH đồng dạng với ΔADB

b: ΔAEH đồng dạng với ΔADC

=>AE/AD=AH/AC

=>AE*AC=AD*AH

ΔAFH đồng dạng với ΔADB

=>AF/AD=AH/AB

=>AF*AB=AH*AD=AE*AC

c: BH*BE+CH*CF

=BD*BC+CD*BC

=BC^2