K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Nếu n lẻ thì n3 lẻ
n lẻ <=> n =2k +1 (k ∈ Z)
n^3 =(2k +1)3 =8k3 +3.4k2 +3.2k +1=2( 4k3 +6k2 +3 k) +1
2( 4k3 +6k2 +3 k) chia hết cho 2 => là số chẵn 
=>2( 4k3 +6k2 +3 k) +1 là số lẻ => n3 lẻ

16 tháng 7 2022

 

Nếu n lẻ thì n có dạng n = 2k+1 với k \in \mathbb{N}.

Do đó n^3 = (2k+1)^3 = 8k^3 + 12k^2 + 6k+1 = 2(k^3 + 6k^2 + 3k) + 1.

Suy ra n^3 lẻ.

Vậy với mọi số tự nhiên n, nếu n lẻ thì n^3 lẻ.

5 tháng 7 2016

Ta có : n là số tự nhiên lẻ => n = 2k+1 (\(k\in N^{\text{*}}\))

\(n^2-1=\left(2k+1\right)^2-1=4k^2+4k+1-1=4k\left(k+1\right)\)

Vì k(k+1) là tích của hai số tự nhiên liên tiếp nên chia hết cho 2.

Do đó : 4k(k+1) chia hết cho 2.4=8

Tham khảoa: giả sử n^2 chia hết cho 3 nhưng n ko chia hết cho 3 
=> n chia 3 dư a (0<a <3) 
=> n = 3b +a 
=> n^2 = 9b^2 + 6ab + a^2 chia hết cho 3 
=> a^2 chia hết cho3 mà 0<a <3 
=> vô lý do ko có số nào thỏa mãn 
=> giả sử sai 
=> n^2 chia hết cho 3 <=> n chia hết cho 3b: undefinedc:Giả sử: n^2 là số lẻ và n là số chẵn
Vì n chẵn => n = 2k(k thuộc N*)
                =>n^2 = 4k^2
                =>n^2 là số chẵn(trái với giả thiết)
Vậy khi n^2 là số lè thì n là số lẻ
10 tháng 1 2018

a) Gọi n=2k+1(k \(\in\) N*)

\(\Rightarrow\)n= (k2+2k+1) - k2 = (k+1)2 - k2 (1)

k \(\in\) N*\(\Rightarrow\) k và k+1 là 2 số tự nhiên liên tiếp \(\Rightarrow\) k2 và (k+1)2 là 2 số chính phương liên tiếp (2)

Từ (1);(2)\(\Rightarrow\) đpcm

b) Gọi n=2k+1(k \(\in\) N*)

\(\Rightarrow\) n2=(2k+1)2=4k2+4k+1=4k(k+1)+1(1)

Lại có: k \(\in\) N* \(\Rightarrow\) k và k+1 là 2 số tự nhiên liên tiếp \(\Rightarrow\) k(k+1) \(⋮2\)

\(\Rightarrow4k\left(k+1\right)⋮8\) \(\Rightarrow\) 4k(k+1)+1 chia 8 dư 1(2)

Từ(1);(2)\(\Rightarrow\) n2 chia 8 dư 1 với mọi n là số tự nhiên lẻ

28 tháng 7 2018

+) giả sử \(a\ge1\overset{.}{,}b\ge1\Rightarrow a+b\ge2\) mâu thuẩn với \(a+b< 2\)

\(\Rightarrow\) ta có được đpcm

+) ta có : giả sử \(n\) là số chẳn \(\Rightarrow5n+4=10k+4=2\left(5k+2\right)\) là số chẳn \(\Rightarrow\) mấu thuẩn với \(5n+4\) là số lẽ \(\Rightarrow\) ta có được đpcm

21 tháng 7 2019

Chị xem thử ở đây (Em không chắc đúng đâu nha): Câu hỏi của Cao Thi Thuy Duong - Toán lớp 10 | Học trực tuyến

21 tháng 7 2019

Chứng minh dễ mà cần gì tham khảo