Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) giả sử \(a\ge1\overset{.}{,}b\ge1\Rightarrow a+b\ge2\) mâu thuẩn với \(a+b< 2\)
\(\Rightarrow\) ta có được đpcm
+) ta có : giả sử \(n\) là số chẳn \(\Rightarrow5n+4=10k+4=2\left(5k+2\right)\) là số chẳn \(\Rightarrow\) mấu thuẩn với \(5n+4\) là số lẽ \(\Rightarrow\) ta có được đpcm
Chị xem thử ở đây (Em không chắc đúng đâu nha): Câu hỏi của Cao Thi Thuy Duong - Toán lớp 10 | Học trực tuyến
Giả sử a^2 + b^2 chia hết cho 8 và a , b đồng thời là số lẻ
\(\Rightarrow a=2k+1\) và \(b=2k+1\)
Khi đó: \(a^2+b^2=\left(2k+1\right)^2+\left(2k+1\right)^2\)
\(\Leftrightarrow4k^2+4k+1+4k^2+4k+1\)
\(\Leftrightarrow8k^2+8k+2\)
\(\Leftrightarrow8k\left(k+1\right)+2⋮̸8\) Mâu thuẫn với giả thiết
\(\Rightarrow a^2+b^2⋮8\) , a , b không đồng thời là số lẻ ( đpcm )
=> n chia 3 dư a (0<a <3)
=> n = 3b +a
=> n^2 = 9b^2 + 6ab + a^2 chia hết cho 3
=> a^2 chia hết cho3 mà 0<a <3
=> vô lý do ko có số nào thỏa mãn
=> giả sử sai
=> n^2 chia hết cho 3 <=> n chia hết cho 3b: c:Giả sử: n^2 là số lẻ và n là số chẵn
Vì n chẵn => n = 2k(k thuộc N*)
=>n^2 = 4k^2
=>n^2 là số chẵn(trái với giả thiết)
Vậy khi n^2 là số lè thì n là số lẻ
Nếu n lẻ thì n3 lẻ
n lẻ <=> n =2k +1 (k ∈ Z)
n^3 =(2k +1)3 =8k3 +3.4k2 +3.2k +1=2( 4k3 +6k2 +3 k) +1
2( 4k3 +6k2 +3 k) chia hết cho 2 => là số chẵn
=>2( 4k3 +6k2 +3 k) +1 là số lẻ => n3 lẻ
Nếu lẻ thì có dạng với .
Do đó .
Suy ra lẻ.
Vậy với mọi số tự nhiên , nếu lẻ thì lẻ.