Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> n chia 3 dư a (0<a <3)
=> n = 3b +a
=> n^2 = 9b^2 + 6ab + a^2 chia hết cho 3
=> a^2 chia hết cho3 mà 0<a <3
=> vô lý do ko có số nào thỏa mãn
=> giả sử sai
=> n^2 chia hết cho 3 <=> n chia hết cho 3b: c:Giả sử: n^2 là số lẻ và n là số chẵn
Vì n chẵn => n = 2k(k thuộc N*)
=>n^2 = 4k^2
=>n^2 là số chẵn(trái với giả thiết)
Vậy khi n^2 là số lè thì n là số lẻ
Nếu n lẻ thì n3 lẻ
n lẻ <=> n =2k +1 (k ∈ Z)
n^3 =(2k +1)3 =8k3 +3.4k2 +3.2k +1=2( 4k3 +6k2 +3 k) +1
2( 4k3 +6k2 +3 k) chia hết cho 2 => là số chẵn
=>2( 4k3 +6k2 +3 k) +1 là số lẻ => n3 lẻ
Nếu lẻ thì có dạng với .
Do đó .
Suy ra lẻ.
Vậy với mọi số tự nhiên , nếu lẻ thì lẻ.
giả sử n^2+4n+2 chia hết cho 4 mà n không chia hết cho 4
=> n chia cho 4 dư a (0<a<4)
=>n=4k+a
=> n^2+4n+2= 16k^2 +8ka +a^2 +16k+4a +2
=>a^2+2 chia hết cho 4, mà 0<a<4 (vô lý do k số nào thỏa mãn)
=> giả thiết sai
vậy nếu n^2 +4n+2 chia hết cho 4 thì n chia hết cho 4
Với $n$ kiểu gì thì $n^2+4n+2$ cũng không chia hết cho $4$ nha bạn