K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tham khảoa: giả sử n^2 chia hết cho 3 nhưng n ko chia hết cho 3 
=> n chia 3 dư a (0<a <3) 
=> n = 3b +a 
=> n^2 = 9b^2 + 6ab + a^2 chia hết cho 3 
=> a^2 chia hết cho3 mà 0<a <3 
=> vô lý do ko có số nào thỏa mãn 
=> giả sử sai 
=> n^2 chia hết cho 3 <=> n chia hết cho 3b: undefinedc:Giả sử: n^2 là số lẻ và n là số chẵn
Vì n chẵn => n = 2k(k thuộc N*)
                =>n^2 = 4k^2
                =>n^2 là số chẵn(trái với giả thiết)
Vậy khi n^2 là số lè thì n là số lẻ

Nếu n lẻ thì n3 lẻ
n lẻ <=> n =2k +1 (k ∈ Z)
n^3 =(2k +1)3 =8k3 +3.4k2 +3.2k +1=2( 4k3 +6k2 +3 k) +1
2( 4k3 +6k2 +3 k) chia hết cho 2 => là số chẵn 
=>2( 4k3 +6k2 +3 k) +1 là số lẻ => n3 lẻ

16 tháng 7 2022

 

Nếu n lẻ thì n có dạng n = 2k+1 với k \in \mathbb{N}.

Do đó n^3 = (2k+1)^3 = 8k^3 + 12k^2 + 6k+1 = 2(k^3 + 6k^2 + 3k) + 1.

Suy ra n^3 lẻ.

Vậy với mọi số tự nhiên n, nếu n lẻ thì n^3 lẻ.

5 tháng 10 2017

giả sử n^2+4n+2 chia hết cho 4 mà n không chia hết cho 4

=> n chia cho 4 dư a (0<a<4)

=>n=4k+a

=> n^2+4n+2= 16k^2 +8ka +a^2 +16k+4a +2

=>a^2+2 chia hết cho 4, mà 0<a<4 (vô lý do k số nào thỏa mãn)

=> giả thiết sai

vậy nếu n^2 +4n+2 chia hết cho 4 thì n chia hết cho 4

AH
Akai Haruma
Giáo viên
5 tháng 10 2017

Với $n$ kiểu gì thì $n^2+4n+2$ cũng không chia hết cho $4$ nha bạn