Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho a+b+c=a mũ 2 +b mũ 2 +c mũ 2=2 và x:y:z=a:b:c chứng minh rằng(x+y+z)mũ 2=2x mũ 2 +2y mũ 2+2z mũ2
a. Theo đề bài ta có :
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}\) và 5x-y+3z=124
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}=\dfrac{5x}{15}=\dfrac{y}{5}=\dfrac{3z}{-6}=\dfrac{5x-y+3z}{15-5+\left(-6\right)}=\dfrac{124}{4}=31\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=31\Rightarrow x=31.3=93\\\dfrac{y}{5}=31\Rightarrow y=31.5=155\\\dfrac{z}{-2}=31\Rightarrow z=\left(-2\right).31=-62\end{matrix}\right.\)
Vậy.........
\(a,x:y:z=5:3:\left(-2\right)\)và \(5x-y+3z=124\)
Ta có: \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{\left(-2\right)}\Rightarrow\dfrac{5x}{15}=\dfrac{y}{5}=\dfrac{3z}{\left(-6\right)}\)
\(=\dfrac{5x-y+3z}{15-5+\left(-6\right)}=\dfrac{124}{4}=31\)
\(\Rightarrow x=31.3=93\)
\(y=31.5=155\)
\(z=31.\left(-2\right)=\left(-62\right)\)
Vậy........
a, \(=-91x-y+5z\)
b, \(=4x^2+x^2y-5y^2-\dfrac{5}{3}x^3+6xy^2+x^2y\)
\(=4x^2+2x^2y-5y^2-\dfrac{5}{3}x^3+6xy^2\)
a) 2 mũ 6 nhân 125 mũ 2 = 1000000 ( 1 triệu )
b) 27 mũ 4 chia 3 mũ 8 = 81
c) 18 mũ 8 nhân 9 mũ 4 = 7.2301961e+13 ( tính được nhưng dài )
d) 4 mũ 9 chia 5 mũ 27 = 3.5184372e-14 ( tính được nhưng dài )
a. 26 . 1252
= (23)2 . 1252
= 82 . 1252
= (8.125)2 = 10002
b. 274 : 38
= (33)4 : 38
= 312 : 38
= 312-8 = 34
c. 188 . 94
= 188 . (32)4
= 188 . 38
= (18.3)8 = 548
d. 49 : 527
= 49 : (53)9
= 49 : 1259
= (4 : 125)9 = (0,032)9
Bài 8:
a: \(\left(\dfrac{2}{5}+\dfrac{3}{4}\right)^2=\left(\dfrac{8+15}{20}\right)^2=\left(\dfrac{23}{20}\right)^2=\dfrac{529}{400}\)
b: \(\left(\dfrac{5}{4}-\dfrac{1}{6}\right)^2=\left(\dfrac{15}{12}-\dfrac{2}{12}\right)^2=\left(\dfrac{13}{12}\right)^2=\dfrac{169}{144}\)