K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2023

`TXĐ: R`

`@` Nếu `x > 2` thì: `f(x)=2x+1`

   H/s xác định trên `(2;+oo)`

`=>` H/s liên tục trên `(2;+oo)`

`@` Nếu `x < 2` thì: `f(x)=x^2-3x+4`

    H/s xác định trên `(-oo;2)`

`=>` H/s liên tục trên `(-oo;2)`

`@` Nếu `x=2` thì: `f(x)=5`

`lim_{x->2^[-]} (x^2-3x+4)=2`

`lim_{x->2^[+]} (2x+1)=5`

   Vì `lim_{x->2^[-]} f(x) ne lim_{x->2^[+]} f(x) =>\cancel{exists} lim_{x->2} f(x)`

  `=>` H/s gián đoạn tại `x=2`

KL: H/s liên tục trên `(-oo;2)` và `(2;+oo)` 

      H/s gián đoạn tại `x=2`

6 tháng 2 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Tập xác định của hàm số là D = R

- Nếu x ≠ √2 thì Giải sách bài tập Toán 11 | Giải sbt Toán 11

Đây là hàm phân thức hữu tỉ nên liên tục trên các khoảng (-∞; √2) và (√2; +∞)

- Tại x = √2:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy hàm số liên tục tại x = √2

Kết luận : y = f(x) liên tục trên R

24 tháng 1 2018

Giải bài 7 trang 143 sgk Đại Số 11 | Để học tốt Toán 11

Giải bài 7 trang 143 sgk Đại Số 11 | Để học tốt Toán 11

⇒ g(x) liên tục tại 2.

Vậy hàm số g(x) liên tục trên R.