K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 9 2021

\(y'=-4x^3-4x=-4x\left(x^2+1\right)=0\Rightarrow x=0\)

Dấu của y':

undefined

Hàm đồng biến trên \(\left(-\infty;0\right)\) và nghịch biến trên \(\left(0;+\infty\right)\)

Qua \(x=0\) ta thấy y' đổi dấu từ dương sang âm nên \(x=0\) là điểm cực đại

9 tháng 6 2021

TXĐ: `D=RR`

`y'=x^3-4x`

`y'=0 <=>` \(\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

\(\begin{array}{|l|cr|} \hline x & -\infty & & -2 &&&& & 0 & &&&&2&&& & +\infty\\ \hline y' & &-& 0& & &+& &0& &&-&&0& &&+&\\ \hline\end{array}\)

Vậy hàm số đồng biến trên các khoảng: `(-2;0)` và `(2; +\infty)`

Hàm số nghịch biến trên các khoảng: `(-\infty; -2)` và `(0;2)`.

11 tháng 5 2017

Đáp án B.

Tập xác định D = R.

y' = 4x3 + 4x

y’ = 0 <=> 4x3 + 4x = 0 <=> x = 0.

Bảng biến thiên

NV
11 tháng 9 2021

a. ĐKXĐ: \(-3\le x\le3\)

\(y'=1-\dfrac{x}{\sqrt{9-x^2}}=\dfrac{\sqrt{9-x^2}-x}{\sqrt{9-x^2}}=0\Rightarrow x=\dfrac{3\sqrt{2}}{2}\)

Dấu của y':

undefined

Hàm đồng biến trên \(\left(-3;\dfrac{3\sqrt{2}}{2}\right)\) và nghịch biến trên \(\left(\dfrac{3\sqrt{2}}{2};3\right)\)

b.

ĐKXĐ: \(x\ne2\)

\(y'=\dfrac{\left(-2x-1\right)\left(x+2\right)+x^2+x+2}{\left(x+2\right)^2}=\dfrac{-x^2-4x}{\left(x+2\right)^2}=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

Dấu của y':

undefined

Hàm đồng biến trên các khoảng \(\left(-4;-2\right)\) và \(\left(-2;0\right)\)

Hàm nghịch biến trên các khoảng \(\left(-\infty;-4\right)\) và \(\left(0;+\infty\right)\)

23 tháng 3 2018

a)Cách tìm cực đại, cực tiểu của hàm số nhờ đạo hàm:

Quy tắc 1:

1. Tìm tập xác định.

2. Tính f'(x). Tìm các điểm tại đó f'(x) bằng 0 hoặc f'(x) không xác định.

3. Lập bảng biến thiên.

4. Từ bảng biến thiên suy ra các điểm cực trị.

Quy tắc 2:

1. Tìm tập xác định.

2. Tính f'(x). Giải phương trình f'(x) = 0 và kí hiệu xi (i = 1, 2, 3, ...) là các nghiệm của nó.

3. Tính f"(x) và f"(xi)

4. Nếu f"(xi) > 0 thì xi là điểm cực tiểu.

Nếu f"(xi) < 0 thì xi là điểm cực đại.

 

 

Dựa vào Quy tắc 2, ta có:

y"(0) = -4 < 0 ⇒ x = 0 là điểm cực đại.

y"(-1) = y"(1) = 8 > 0 ⇒ x = ±1 là hai điểm cực tiểu.

20 tháng 10 2021

Tập xác định: D=\(\left[-2\sqrt{2};2\sqrt{2}\right]\).

\(y'=1-\dfrac{x}{\sqrt{8-x^2}}\) = 0 \(\Rightarrow\) x=2.

Bảng biến thiên:

undefined

Vậy hàm số đã cho đồng biến trên khoảng (\(-2\sqrt{2}\);2), nghịch biến trên khoảng (2;\(2\sqrt{2}\)) và y=4 (tại x=2).

Tham khảo: Đồ thị:

undefined

21 tháng 2 2017

Đáp án A

Phương pháp:

+) Tính y’ và giải phương trình y' = 0

+) Lập bảng xét dấu của y’ và rút ra kết luận.

+) Điểm x = x0 được gọi là điểm cực tiểu của hàm số khi và chỉ khi qua điểm đó y’ đổi dấu từ âm sang dương.

Cách giải:

Bảng xét dấu y’:

 

Hàm số đạt cực tiểu tại x = 0, giá trị cực tiểu yCT = y(0) = 2

3 tháng 5 2018

Chọn A

Lập bảng biến thiên . Suy ra  y C Đ = - 4

22 tháng 1 2019

10 tháng 1 2019

Chọn A

Ta có: y =  x 4 - 2 x 2 + 3  

Vậy hàm số đạt cực tiểu tại x = 1; x = -1 và giá trị cực tiểu của hàm số là