Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) y = sinx - cosx
Đặt \(f\left(x\right)\) = y = sinx - cosx
Ta có : \(f\left(-x\right)=sin\left(-x\right)-cos\left(-x\right)\)
<=> \(f\left(-x\right)=-sinx+cosx\)
<=> \(f\left(-x\right)\ne f\left(x\right)\)
Vậy hàm số đã cho là hàm số không chẵn , không lẻ .
b) y = sinxcos2x + tanx
y = \(f\left(x\right)=sinxcos^2x+tanx\)
TXĐ : \(D_1=R\backslash\left\{\frac{\pi}{2}+k\pi\left|k\in Z\right|\right\}\)
Vì với mọi x \(\in\) D1 , ta có - x \(\in\) D1
và \(f\left(-x\right)=sin\left(-x\right)cos^2\left(-x\right)+tan\left(-x\right)\)
\(=-sinxcos^2x-tanx=-f\left(x\right)\)
Nên hàm số đã cho là hàm số lẻ
cô ơi , tại sao lại không thể biến đổi \(-\sin x+\cos x\) thành \(-\left(\sin x-\cos x\right)\)?
Đáp án D
Ta có tập xác định D = R.
Hàm số y = f(x) = 0 có:
f(-x) = 0 và –f(x) = 0
=> f(x) = f(-x) = -f(x) vừa thỏa mãn tính chất của hàm số chẵn, vừa thỏa mãn tính chất của hàm số lẻ, nên đây là hàm số vừa chẵn vừa lẻ.