K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2017

Đáp án D

Ta có tập xác định D = R.

Hàm số y = f(x) = 0 có:

f(-x) = 0 và –f(x) = 0

=> f(x) = f(-x) = -f(x)  vừa thỏa mãn tính chất của hàm số chẵn, vừa thỏa mãn tính chất của hàm số lẻ, nên đây là hàm số vừa chẵn vừa lẻ.

NV
29 tháng 7 2021

\(y=sin\left(x-\dfrac{\pi}{2}\right)=-sin\left(\dfrac{\pi}{2}-x\right)=-cosx\)

\(y\left(-x\right)=-cos\left(-x\right)=-cosx=y\left(x\right)\)

Hàm đã cho là hàm chẵn

30 tháng 7 2021

e cảm ơn ạ

5 tháng 9 2016

a) y = sinx - cosx

Đặt \(f\left(x\right)\) = y = sinx - cosx

Ta có : \(f\left(-x\right)=sin\left(-x\right)-cos\left(-x\right)\)

       <=> \(f\left(-x\right)=-sinx+cosx\)

       <=> \(f\left(-x\right)\ne f\left(x\right)\)

Vậy hàm số đã cho là hàm số không chẵn , không lẻ .

b) y = sinxcos2x + tanx

y = \(f\left(x\right)=sinxcos^2x+tanx\)

TXĐ : \(D_1=R\backslash\left\{\frac{\pi}{2}+k\pi\left|k\in Z\right|\right\}\)

Vì với mọi x \(\in\) D1 , ta có - x \(\in\) D1

và \(f\left(-x\right)=sin\left(-x\right)cos^2\left(-x\right)+tan\left(-x\right)\)

                 \(=-sinxcos^2x-tanx=-f\left(x\right)\)

Nên hàm số đã cho là hàm số lẻ

6 tháng 9 2016

cô ơi , tại sao lại không thể biến đổi \(-\sin x+\cos x\) thành \(-\left(\sin x-\cos x\right)\)?

17 tháng 6 2021

Đặt `y=f(x)=x-sinx`

Có: `f(-x)=-x-sin(-x)=-x+sinx=-(x-sinx)=-f(x)`

`=>` Hàm lẻ.

NV
17 tháng 12 2020

Miền xác định của hàm là miền đối xứng

\(y\left(-x\right)=cot\left(-x\right)-sin\left(-x-1\right)=-cotx+sin\left(x+1\right)\)

\(y\left(-x\right)\ne y\left(x\right)\) mà cũng khác \(-y\left(x\right)\) nên hàm không chẵn không lẻ

26 tháng 9 2021

a, \(f\left(-x\right)=sin^2\left(-2x\right)+cos\left(-3x\right)=sin^22x+cos3x=f\left(x\right)\)

\(\Rightarrow\) Là hàm số chẵn.

26 tháng 9 2021

b, \(f\left(-x\right)=\sqrt{\left(-x\right)^2-16}=\sqrt{x^2-16}=f\left(x\right)\)

\(\Rightarrow\) Là hàm số chẵn.