K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 2: 

a: Để f(x) chia hết cho g(x) thì \(2x^3+3x^2-x+4⋮2x+1\)

\(\Leftrightarrow2x^3+x^2+2x^2+x-2x-1+5⋮2x+1\)

\(\Leftrightarrow2x+1\in\left\{1;-1;5;-5\right\}\)

hay \(x\in\left\{0;-1;2;-3\right\}\)

b: Để f(x) chia hết cho g(x) thì \(3x^3-x^2+6x⋮3x-1\)

\(\Leftrightarrow3x^3-x^2+6x-2+2⋮3x-1\)

\(\Leftrightarrow3x-1\in\left\{1;-1;2;-2\right\}\)

hay \(x\in\left\{\dfrac{2}{3};0;1;-\dfrac{1}{3}\right\}\)

16 tháng 8 2017

a) gọi Q(x) là thương khi chia f(x) cho g(x)

khi đó ta có dạng: f(x)=g(x).Q(x)=> f(x)=(x+3)(Q(x)   (1)

Vì (1) luôn đúng vs mọi x nên thay x=-3 vào (1) ta đc:

f(-3)= \(\left(-3\right)^3+3.\left(-3\right)^2+5.\left(-3\right)+a=0\) 0

    <=> \(-15+a=0\)

<=>a=15

Vậy vs a=15 thì f(x) chia hết cho g(x)

22 tháng 12 2020

Rảnh rỗi thật sự .-.

undefined

27 tháng 6 2017

Đặt tính chia tìm thương và dư của f(x) cho g(x) ta được:

\(f\left(x\right)=g\left(x\right)\cdot\left(6x^2-x+a-6b-1\right)+\left[\left(a-5b+2\right)+\left(6b^2+b-ab+2\right)\right]\)

Vậy để f(x) chia hết cho g(x) thì dư phải bằng 0, khi đó:

\(\hept{\begin{cases}a-5b+2=0\\6b^2+b-ab+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=5b-2\\6b^2+b-b\left(5b-2\right)+2=0\Rightarrow b^2+3b+2=0\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}b=-1\Rightarrow a=-7\\b=-2\Rightarrow a=-12\end{cases}}\)

Vậy các giá trị cần xác định của a, b để f(x) chia hết cho g(x) là (a;b) = (-7;-1) , (-12;-2)

27 tháng 6 2017

Hay ghê :)

21 tháng 4 2019

Để \(f\left(x\right)⋮g\left(x\right)\)thì \(f\left(x\right)=g\left(x\right)\cdot q\)( với q là hằng số )

Khi đó ta có pt :

\(x^5-2x^4-6x^3+ax^2+bx+c=\left(x^2-1\right)\left(x-3\right)\cdot q\)

\(\Leftrightarrow x^5-2x^4-6x^3+ax^2+bx+c=\left(x-1\right)\left(x+1\right)\left(x-3\right)\cdot q\)

Vì pt trên đúng với mọi x nên :

+) đặt \(x=1\)

\(pt\Leftrightarrow1^5-2\cdot1^4-6\cdot1^3+a\cdot1^2+b\cdot1+c=\left(1-1\right)\left(1+1\right)\left(1-3\right)\cdot q\)

\(\Leftrightarrow-7+a+b+c=0\)

\(\Leftrightarrow a+b+c=7\)(1)

Chứng minh tương tự, lần lượt đặt \(x=-1\)và \(x=3\)ta có các pt :

\(\hept{\begin{cases}3+a-b+c=0\\-81+9a+3b+c=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b+c=-3\\9a+3b+c=81\end{cases}}}\)(2)

Từ (1) và (2) ta có hệ pt 3 ẩn :

\(\hept{\begin{cases}a+b+c=7\\a-b+c=-3\\9a+3b+c=81\end{cases}}\)

Giải hệ ta được \(\hept{\begin{cases}a=8\\b=5\\c=-6\end{cases}}\)

Vậy....