Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Gọi f( x ) = 2n2 + n - 7
g( x ) = n - 2
Cho g( x ) = 0
\(\Leftrightarrow\)n - 2 = 0
\(\Rightarrow\)n = 2
\(\Leftrightarrow\)f( 2 ) = 2 . 22 + 2 - 7
\(\Rightarrow\)f( 2 ) = 3
Để f( x ) \(⋮\)g( x )
\(\Rightarrow\)n - 2 \(\in\)Ư( 3 ) = { \(\pm\)1 ; \(\pm\)3 }
Ta lập bảng :
n - 2 | 1 | - 1 | 3 | - 3 |
n | 3 | 1 | 5 | - 1 |
Vậy : n \(\in\){ - 1 ; 1 ; 3 ; 5 }
Ta có: \(x^4:x^2=x^2\)
=> Đa thức thương của đa thức f(x) cho đa thức g(x) có dạng \(x^2+cx+d\)
=> \(f\left(x\right)=g\left(x\right).\left(x^2+cx+d\right)\)
=> \(x^4-3x^3+3x^2+ax+b=\left(x^2-3x+4\right)\left(x^2+cx+d\right)\)
=> \(x^4-3x^3+3x^2+ax+b=x^4+x^3\left(c-3\right)+x^2\left(d-3c+4\right)+x\left(4c-3d\right)+4d\)
=> \(\left\{{}\begin{matrix}c-3=-3\\d-3c+4=3\\4c-3d=a\\b=4d\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}c=0\\d=-1\\a=3\\b=-4\end{matrix}\right.\)
Vậy a = 3; b = -4
Ngoài cách đồng nhất hệ số như trên bạn có thể lam theo phương pháp giá trị riêng
\(\Rightarrow\) Để \(f_{\left(x\right)}⋮g_{\left(x\right)}\)
\(\text{thì }\Rightarrow\left\{{}\begin{matrix}\left(a-3\right)x=0\\b+4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-3=0\\b+4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=3\\b=-4\end{matrix}\right.\)
Vậy để \(f_{\left(x\right)}⋮g_{\left(x\right)}\) thì \(a=3;b=-4\)
a) gọi Q(x) là thương khi chia f(x) cho g(x)
khi đó ta có dạng: f(x)=g(x).Q(x)=> f(x)=(x+3)(Q(x) (1)
Vì (1) luôn đúng vs mọi x nên thay x=-3 vào (1) ta đc:
f(-3)= \(\left(-3\right)^3+3.\left(-3\right)^2+5.\left(-3\right)+a=0\) 0
<=> \(-15+a=0\)
<=>a=15
Vậy vs a=15 thì f(x) chia hết cho g(x)