Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 3x-2=2x-3
=>x=-1
b: 2x+3=5x+9
=>-3x=6
=>x=-2
c: 5-2x=7
=>2x=-2
=>x=-2
d: 10x+3-5x=4x+12
=>5x+3=4x+12
=>x=9
e: 11x+42-2x=100-9x-22
=>9x+42=78-9x
=>18x=36
=>x=2
f: 2x-(3-5x)=4(x+3)
=>2x-3+5x=4x+12
=>7x-3=4x+12
=>3x=15
=>x=5
\(2x^2+5x-12\)
\(=2x^2+8x-3x-12\)
\(=2x\left(x+4\right)-3\left(x+4\right)\)
\(=\left(x+4\right)\left(2x-3\right)\)
Ta có : \(\frac{\left(5x+3\right)\left(3x+11\right)}{4}-\frac{x-7}{12}=0\)
=> \(\frac{3\left(5x+3\right)\left(3x+11\right)}{12}-\frac{x-7}{12}=0\)
=> \(3\left(5x+3\right)\left(3x+11\right)-\left(x-7\right)=0\)
=> \(3\left(15x^2+9x+55x+33\right)-x+7=0\)
=> \(45x^2+27x+165x+99-x+7=0\)
=> \(45x^2+191x+106=0\)
=> \(45x^2+2.\sqrt{45}x.\frac{191}{2\sqrt{45}}+\frac{191^2}{\left(2\sqrt{45}\right)^2}-\frac{17401}{180}=0\)
=> \(\left(x\sqrt{45}+\frac{191}{2\sqrt{45}}\right)^2-\left(\sqrt{\frac{17401}{180}}\right)^2=0\)
=> \(\left(x\sqrt{45}+\frac{191}{2\sqrt{45}}-\sqrt{\frac{17401}{180}}\right)\left(x\sqrt{45}+\frac{191}{2\sqrt{45}}+\sqrt{\frac{17401}{180}}\right)=0\)
=> \(\left[{}\begin{matrix}x\sqrt{45}+\frac{191}{2\sqrt{45}}-\sqrt{\frac{17401}{180}}=0\\x\sqrt{45}+\frac{191}{2\sqrt{45}}+\sqrt{\frac{17401}{180}}=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x\sqrt{45}=-\frac{191}{2\sqrt{45}}+\sqrt{\frac{17401}{180}}\\x\sqrt{45}=-\frac{191}{2\sqrt{45}}-\sqrt{\frac{17401}{180}}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{-\frac{191}{2\sqrt{45}}+\sqrt{\frac{17401}{180}}}{\sqrt{45}}\\x=\frac{-\frac{191}{2\sqrt{45}}-\sqrt{\frac{17401}{180}}}{\sqrt{45}}\end{matrix}\right.\)
Vậy phương trình trên có nghiệm là \(\left[{}\begin{matrix}x=\frac{-\frac{191}{2\sqrt{45}}+\sqrt{\frac{17401}{180}}}{\sqrt{45}}\\x=\frac{-\frac{191}{2\sqrt{45}}-\sqrt{\frac{17401}{180}}}{\sqrt{45}}\end{matrix}\right.\) .
\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}\\ =\sqrt{3\left(x^2+2x+1\right)+9}+\sqrt{5\left(\left(x^2\right)^2-2x^2+1\right)+4}\\ =\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}\)
do: \(+\left(x+1\right)^2\ge0\Rightarrow3.\left(x+1\right)^2+9\ge9\Rightarrow\sqrt{3\left(x+1\right)^2+9}\ge\sqrt{9}=3\)(1)\(+\left(x^2-1\right)^2\ge0\Rightarrow5\left(x^2-1\right)^2+4\ge4\Rightarrow\sqrt{5\left(x^2-1\right)^2+4}\ge\sqrt{4}=2\)(2)
từ (1) và(2)\(\Rightarrow\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}\ge3+2=5\)
câu b bạn làm tương tự
Ta có : \(x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow x^4+2x^3+5x^2+10x-6x-12=0\)
\(\Leftrightarrow x^3\left(x+2\right)+5x\left(x+2\right)-6\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3+5x-6\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-x^2+x^2-x+6x-6\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[x^2\left(x-1\right)+x\left(x-1\right)+6\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x^2+x+6\right)=0\)
\(\Leftrightarrow\)\(x+2=0\)
hoặc \(x-1=0\)
hoặc \(x^2+x+6=0\)
\(\Leftrightarrow\) \(x=-2\)(tm)
hoặc \(x=1\)(tm)
hoặc \(\left(x+\frac{1}{2}\right)^2+\frac{23}{4}=0\)(ktm)
Vậy tập nghiệm của phương trình là \(S=\left\{-2;1\right\}\)