Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) bạn nhóm 2 cái cuối thành 1 nhóm, 2 cái ở giữa thành 1 nhóm, rồi đặt ẩn phụ là ra
\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\)
\(\Leftrightarrow\)\(\left(x^2+3x\right)\left(x^2+3x+2\right)-24=0\)
Đặt \(x^2+3x=t\) ta có:
\(t\left(t+2\right)-24=0\)
\(\Leftrightarrow\)\(t^2+2t-24=0\)
\(\Leftrightarrow\)\(\left(t-4\right)\left(t+6\right)=0\)
đến đây bn thay trở lại rồi tìm nghiệm nhé
\(a,\left(x-2\right)^2-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)
\(\Leftrightarrow24x=-10\)
\(\Leftrightarrow x=-\dfrac{5}{12}\)
Vậy:....
\(b,\left(5x+1\right)^2-\left(5x+3\right)\left(5x-3\right)=30\)
\(\Leftrightarrow25x^2+10x+1-25^2+9=30\)
\(\Leftrightarrow10x=20\)
\(\Rightarrow x=2\)
Vậy :....
\(c,\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=15\)\(\Leftrightarrow x^3+27-x\left(x^2-4\right)=15\)
\(\Leftrightarrow x^3+27-x^3+4x=15\)
\(\Leftrightarrow4x=15-27=-12\)
\(\Leftrightarrow x=-3\)
vậy : .....
a: \(=x\left[49-x^2\left(2x+1\right)^2\right]\)
\(=x\left[49-\left(2x^2+x\right)^2\right]\)
\(=x\left[\left(7-2x^2-x\right)\left(7+2x^2+x\right)\right]\)
b: \(=5\left[25x^2-\left(y^2-4y+4\right)\right]\)
\(=5\left[\left(5x-y+2\right)\left(5x+y-2\right)\right]\)
c: \(=1-4x^2-x\left(x^2-4\right)\)
\(=1-4x^2-x^3+4x\)
\(=\left(1-x\right)\left(1+x+x^2\right)-4x\left(x-1\right)\)
\(=\left(1-x\right)\left(1+x+x^2+4x\right)\)
\(=\left(1-x\right)\left(x^2+5x+1\right)\)
e: =(x-9)(x+6)
\(3\left(x-1\right)^2-3x\left(x-5\right)=1\)
\(\Rightarrow3x^2-3^2-3x^2+15x=1\)
\(\Rightarrow3x^2-9-3x^2+15x=1\)
\(\Rightarrow-9+15x=1\)
\(\Rightarrow15x=-8\)
\(\Rightarrow x=\frac{-8}{15}\)
Câu 1 :
\(a,x^3-6x^2+9x\)
\(=x\left(x^2-6x+9\right)\)
\(=x\left(x-3\right)\)
b;c tự lm nha !!! : câu 2 cx vậy
1.b) x2 - 2xy + 3x - 6y = x2 - 2xy + 3x - 3y x 2
= (x2 - 2xy) + (3x - 3y) x 2
= 2x (x - y) + 3 (x - y) x 2
= (x - y) (2x + 3 x 2)
= (x - y) (2x + 6)
2.
(2x4 - 3x3 + 3x2 - 3x + 1) : (x2 + 1)
2x4 - 3x3 + 3x2 - 3x + 1 / x2 + 1
2x4 + 2x2 / 2x2 - 3x + 1
0 - 3x3 + x2 - 3x + 1 /
- 3x3 - 3x /
0 + x2 + 0 + 1 /
x2 + 1 /
0
=> đây là phép chia hết
Vậy (2x4 - 3x3 + 3x2 - 3x + 1) : (x2 + 1) = 2x2 - 3x + 1
(Sai thì thôi)
\(\dfrac{\left(x^2+x+1\right)\left(3x+1\right)}{x+2}=\dfrac{x\left(x^2+x+1\right)}{2\left(x+2\right)}\) \(\left(dkxd:x\ne-2\right)\)
\(\Leftrightarrow\dfrac{\left(x^2+x+1\right)\left(3x+1\right)}{x+2}-\dfrac{x\left(x^2+x+1\right)}{2\left(x+2\right)}=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left[2\left(3x+1\right)-x\right]=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(6x+2-x\right)=0\)
Bỏ vế đằng trước \(x^2+x+1=0\) do vô nghiệm
\(\Leftrightarrow6x+2-x=0\)
\(\Leftrightarrow5x=-2\)
\(\Leftrightarrow x=-\dfrac{2}{5}\left(tmdk\right)\)
Vậy \(S=\left\{-\dfrac{2}{5}\right\}\)
\(\dfrac{\left(x^2+x+1\right).\left(3x+1\right)}{x+2}=\dfrac{\left(x^2+x+1\right).x}{2\left(x+2\right)}\)
hay \(\left(x^2+x+1\right).\dfrac{3x+1}{x+2}=\left(x^2+x+1\right).\dfrac{x}{2\left(x+2\right)}\)