Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(x^3+3x^2-x-3=\left(x-2\right)\left(x^2+bx+c\right)+a\)
\(\Leftrightarrow x^3-2x^2+5x^2-10x+11x-22+19=\left(x-2\right)\left(x^2+bx+c\right)+a\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+5x+11\right)+19=\left(x-2\right)\left(x^2+bx+c\right)+a\)
=>b=5; c=11; c=19
2: \(4x^3+7x-6=\left(ax+b\right)\left(x^2+x+1\right)+c\)
\(\Leftrightarrow4x^3+4x^2+4x-4x^2-4x-4+7x-2=\left(ax+b\right)\left(x^2+x+1\right)+c\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(4x-4\right)+7x-2=\left(ax+b\right)\left(x^2+x+1\right)+c\)
=>a=4; b=-4; c=7x-2
Bài 2:
a: \(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
làm mẫu 1 phần thôi men còn lại tự làm
giải
a)
Để \(A\left(x\right)⋮B\left(x\right)\)\(\Leftrightarrow\hept{\begin{cases}b-3a+16a=0\\24-12a=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b+13.2=0\\a=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=-26\\a=2\end{cases}}\)
Ta có :
\(4x^3+7x^2+7x-6=\left(ax+b\right)\left(x^2+x+1\right)+c\)
\(\Leftrightarrow4x^3+7x^2+7x-6=ax^3+ax^2+ax+bx^2+bx+b+c\)
\(\Leftrightarrow4x^3+7x^2+7x-6=ax^3+\left(a+b\right)x^2+\left(a+b\right)x+\left(b+c\right)\)
( Phương pháp đồng nhất hệ số )
\(\Rightarrow\hept{\begin{cases}a=4\\a+b=7\\b+c=-6\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=4\\b=3\\c=-9\end{cases}}\)
Vậy ...
\(1,\\ a,=7x^3-49x^2+21x\\ b,=x^2-x-42\\ c,=x^2-16x+64\\ d,=9x^2+12x+4\\ e,=x^2-16-25+10x-x^2=10x-41\\ 2,\\ a,\Rightarrow2\left(x-7\right)=19\\ \Rightarrow x-7=\dfrac{19}{2}\Rightarrow x=\dfrac{33}{2}\\ b,\Rightarrow4x^2-20x+25-4x^2+3x-2x=50\\ \Rightarrow-19x=25\Rightarrow x=-\dfrac{25}{19}\)