Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+2x^3-4x=4\)
\(\Leftrightarrow\left(x^2-2\right)\left(x^2+2\right)+2x\left(x^2-2\right)=0\)
\(\Leftrightarrow x^2-2=0\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
\(\Rightarrow x^4+2x^3-4x-4=0\\ \Rightarrow x^4-2x^2+2x^3-4x+2x^2-4=0\\ \Rightarrow\left(x^2-2\right)\left(x^2+2x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x^2=2\\\left(x+1\right)^2+1=0\left(vô.lí\right)\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
\(\dfrac{x+1}{x-2}=\dfrac{1}{x^2-4}ĐK:x\ne\pm2\)
\(\Rightarrow\left(x+1\right)\left(x+2\right)=1\Leftrightarrow x^2+3x+2=1\)
\(\Leftrightarrow x^2+3x+1=0\)
=> Phương trình vô nghiệm
thật ra bài này vẫn có nghiệm nhưng nghiệm là số vô tỉ
\(\Leftrightarrow x^2+3x+1=0\Leftrightarrow x^2+3x+\dfrac{9}{4}-\dfrac{5}{4}=0\)
\(\Leftrightarrow\left(x+\dfrac{3}{2}\right)^2-\left(\dfrac{\sqrt{5}}{2}\right)^2=0\)nhưng lớp 8 mình chưa làm nên mình để pt vô nghiệm nhé
Về học lại hằng đẳng thức nha .-.
\(\Leftrightarrow\dfrac{\left(x+2\right)+5}{2-x}=\dfrac{2x-3}{\left(x-2\right)\left(x+2\right)}\\ \Leftrightarrow-\left(x+2\right)+5\left(x+2\right)=2x-3\\ \Leftrightarrow6x+12-2x+3=0\\ \Leftrightarrow4x+15=0\\ \Leftrightarrow x=\dfrac{-15}{4}\)
\(\dfrac{1}{x+2}+\dfrac{5}{2-x}=\dfrac{2x-3}{x^2-4}\)
\(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{5}{x-2}-\dfrac{2x-3}{\left(x-2\right)\left(x+2\right)}=0\left(đk:x\ne\pm2\right)\)
\(\Leftrightarrow\dfrac{x-2-5\left(x+2\right)-2x-3}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow x-2-5x-10-2x-3=0\)
\(\Leftrightarrow-6x-15=0\)
\(\Leftrightarrow-6x=15\)
\(\Leftrightarrow x=-\dfrac{15}{6}\left(n\right)\)
Vậy \(S=\left\{-\dfrac{15}{6}\right\}\)
\(\dfrac{1}{x+2}+\dfrac{5}{2-x}=\dfrac{2x-3}{x^2-4}\) đkxđ : x khác 2 , x khác -2.
<=> \(\dfrac{1}{x+2}-\dfrac{5}{x-2}-\dfrac{2x-3}{x^2-4}=0\)
<=> \(\dfrac{1.\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{5.\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2x-3}{\left(x-2\right)\left(x+2\right)}=0\)
<=> \(\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}-\dfrac{5x+10}{\left(x-2\right)\left(x+2\right)}-\dfrac{2x-3}{\left(x-2\right)\left(x+2\right)}=0\)
<=>\(x-2-5x-10-2x+3=0\)
<=> \(-6x-9=0\)
<=> \(x=-\dfrac{9}{6}=-\dfrac{3}{2}\left(nhận\right)\)
Vậy pt có nghiệm \(S=\left\{-\dfrac{3}{2}\right\}\)
\(a,A=\left(x^2-x\right)\left(x^2-x-12\right)\\ A=\left(x^2-x\right)^2-12\left(x^2-x\right)\\ A=\left(x^2-x\right)^2-12\left(x^2-x\right)+36-36\\ A=\left(x^2-x+6\right)^2-36\ge-36\\ A_{min}=-36\Leftrightarrow x^2-x+6=0\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\\ b,B=4x^4+4x^3+5x^2+4x+3\\ B=\left(4x^4+4x^3+x^2\right)+\left(x^2+4x+4\right)-1\\ B=x^2\left(2x+1\right)^2+\left(x+2\right)^2-1\ge-1\\ B_{min}=-1\Leftrightarrow\left\{{}\begin{matrix}x\left(2x+1\right)=0\\x+2=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Vậy dấu \("="\) không xảy ra
\(x^2-4x+4=\left(x-2\right)^2\)