K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2021

\(x^4+2x^3-4x=4\)

\(\Leftrightarrow\left(x^2-2\right)\left(x^2+2\right)+2x\left(x^2-2\right)=0\)

\(\Leftrightarrow x^2-2=0\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

22 tháng 10 2021

\(\Rightarrow x^4+2x^3-4x-4=0\\ \Rightarrow x^4-2x^2+2x^3-4x+2x^2-4=0\\ \Rightarrow\left(x^2-2\right)\left(x^2+2x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x^2=2\\\left(x+1\right)^2+1=0\left(vô.lí\right)\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)

20 tháng 10 2021

\(a,A=\left(x^2-x\right)\left(x^2-x-12\right)\\ A=\left(x^2-x\right)^2-12\left(x^2-x\right)\\ A=\left(x^2-x\right)^2-12\left(x^2-x\right)+36-36\\ A=\left(x^2-x+6\right)^2-36\ge-36\\ A_{min}=-36\Leftrightarrow x^2-x+6=0\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\\ b,B=4x^4+4x^3+5x^2+4x+3\\ B=\left(4x^4+4x^3+x^2\right)+\left(x^2+4x+4\right)-1\\ B=x^2\left(2x+1\right)^2+\left(x+2\right)^2-1\ge-1\\ B_{min}=-1\Leftrightarrow\left\{{}\begin{matrix}x\left(2x+1\right)=0\\x+2=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

Vậy dấu \("="\) không xảy ra

15 tháng 4 2022

bài 2 là dương nhé

Bài 2: 

a: Để \(\dfrac{4}{x+2}>0\) thì x+2>0

hay x>-2

b: Để \(\dfrac{3x+2}{-4}>0\) thì 3x+2<0

hay x<-2/3

NV
15 tháng 12 2020

a.

\(1-4x^2=\left(1-2x\right)\left(1+2x\right)\)

b.

\(8-27x^3=\left(2\right)^3-\left(3x\right)^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)

c.

\(27+27x+9x^2+x^3=x^3+3.x^2.3+3.3^2.x+3^3\)

\(=\left(x+3\right)^3\)

d.

\(2x^3+4x^2+2x=2x\left(x^2+2x+1\right)=2x\left(x+1\right)^2\)

e.

\(x^2-y^2-5x+5y=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-5\right)\)

f.

\(x^2-6x+9-y^2=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)

1 tháng 7 2021

g. 10x(x-y)-6y(y-x)

=10x(x-y)+6y(x-y)

=(x-y)(10x+6y)

h.x2-4x-5

=(x-5)(x+1)

i.x4-y= (x2-y2)(x2+y2)

 

 

28 tháng 7 2021

a. `6x(x-2015)-x+2015=6x(x-2015)-(x-2015)=(x-2015)(6x-1)`

b. `x^4+4x^2+4=(x^2)^2+2.x^2 .2 +2^2=(x^2+2)^2`

a) \(6x\left(x-2015\right)-x+2015\)

\(=6x\left(x-2015\right)-\left(x-2015\right)\)

\(=\left(x-2015\right)\left(6x-1\right)\)

b) \(x^4+4x^2+4\)

\(=x^4+2\cdot x^2\cdot2+2^2\)

\(=\left(x^2+2\right)^2\)

a) Ta có: \(\dfrac{4x^2-3x-7}{A}=\dfrac{4x-7}{2x+3}\)

\(\Leftrightarrow A=\dfrac{\left(2x+3\right)\left(4x^2-3x-7\right)}{4x-7}\)

\(\Leftrightarrow A=\dfrac{\left(2x+3\right)\left(4x-7\right)\left(x+1\right)}{4x-7}\)

\(\Leftrightarrow A=\left(2x+3\right)\left(x+1\right)\)

\(\Leftrightarrow A=2x^2+5x+3\)

b) Ta có: \(\dfrac{1}{B}=\dfrac{a+b}{a^3+b^3}\)

\(\Leftrightarrow\dfrac{1}{B}=\dfrac{a+b}{\left(a+b\right)\left(a^2-ab+b^2\right)}=\dfrac{1}{a^2-ab+b^2}\)

hay \(B=a^2-ab+b^2\)

24 tháng 1 2019

Vì GTTĐ luôn lớn hơn hoặc bằng 0 với mọi x, do đó :

\(\left|x+1\right|+\left|2x+15\right|+\left|3x+6041\right|\ge0\forall x\)

\(\Leftrightarrow7x\ge0\)

\(\Leftrightarrow x\ge0\)

Từ điều kiện này của x ta có phương trình :

\(x+1+2x+15+3x+6041=7x\)

\(\Leftrightarrow6x+6057=7x\)

\(\Leftrightarrow7x-6x=6057\)

\(\Leftrightarrow x=6057\)

Vậy tập nghiệm của pt là S = { 6057 }

NV
21 tháng 7 2021

\(3x^2\left(2x^3-x+5\right)=6x^5-3x^3+15x^2\)

\(\Rightarrow\) Hệ số của \(x^5\) là 6

a) Ta có: \(36x^3-4x=0\)

\(\Leftrightarrow4x\left(9x^2-1\right)=0\)

\(\Leftrightarrow x\left(3x-1\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=\dfrac{-1}{3}\end{matrix}\right.\)

b) Ta có: \(3x\left(x-2\right)+x-2=0\)

\(\Leftrightarrow\left(x-2\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-1}{3}\end{matrix}\right.\)