Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt |a|+|b|+|c|+|d| \(\ge\)|a+b+c+d| ta có:
B = |x-2016|+|x-2015|+|x-2014|+|x-2013|+|x-2012|+2016
B = |2016-x|+|2015-x|+|x-2014|+|x-2013|+|x-2012|+2016 \(\ge\) |(2016-x)+(2015-x)+0+(x-2013)+(x-2012)|+2016 = |6|+2016 = 6+2016 = 2022
Dấu "=" xảy ra khi \(\left\{\begin{matrix}x-2015\le0\\x-2014=0\\x-2013\ge0\end{matrix}\right.\) => x = 2014
Ta có: \(\left|x-2016\right|\ge0\forall x\in R\)
\(\left|x-2015\right|\)\(\ge0\forall x\in R\)
.....................
=> |x-2016|+|x-2015|+|x-2014|+|x-2013|+|x-2012| \(\ge0\forall x\in R\)
=> |x-2016|+|x-2015|+|x-2014|+|x-2013|+|x-2012| + 2016 \(\ge0\forall x\in R\)
Dấu "=" xảy ra khi \(\left|x-2016\right|=0\); .....; \(\left|x-2012\right|=0\) Với \(\left|x-2016\right|=0\) => x = \(2016\) Với \(\left|x-2015\right|=0\) => x = 2015 Với \(\left|x-2014\right|=0\) => x = 2014 Với \(\left|x-2013\right|=0\) => x = 2013 Với \(\left|x-2012\right|=0\) => x = 2012 Vậy GTNN của B = 2016 khi x \(\in\) \(\left\{2016;2015;2014;2013;2012\right\}\)\(\dfrac{x+2016}{2013}+\dfrac{x+2010}{2014}+\dfrac{x+2010}{2015}+\dfrac{x+2010}{2016}+\dfrac{x+2010}{2015}+\dfrac{x+2016}{2018}\)
Đề sai.
\(\dfrac{x-1}{2012}+\dfrac{x-2}{2013}+\dfrac{x-3}{2014}=\dfrac{x-4}{2015}+\dfrac{x-5}{2016}+\dfrac{x-6}{2017}\)
\(\Leftrightarrow\left(\dfrac{x-1}{2012}+1\right)+\left(\dfrac{x-2}{2013}+1\right)+\left(\dfrac{x-3}{2014}+1\right)=\left(\dfrac{x-4}{2015}+1\right)+\left(\dfrac{x-5}{2016}+1\right)+\left(\dfrac{x-6}{2017}+1\right)\)
\(\Leftrightarrow\dfrac{x+2011}{2012}+\dfrac{x+2011}{2013}+\dfrac{x+2011}{2014}-\dfrac{x+2011}{2015}-\dfrac{x+2011}{2016}-\dfrac{x+2011}{2017}=0\)
\(\Leftrightarrow\left(x+2011\right)\left(\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}-\dfrac{1}{2015}-\dfrac{1}{2016}-\dfrac{1}{2017}\right)=0\)
\(\Leftrightarrow x=-2011\)( do \(\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}-\dfrac{1}{2015}-\dfrac{1}{2016}-\dfrac{1}{2017}\ne0\))
Ta có : \(\frac{x+5}{2012}+\frac{x+4}{2013}+\frac{x+3}{2014}=\frac{x+2}{2015}+\frac{x+1}{2016}+\frac{x}{2017}\)
\(\Rightarrow\frac{x+5}{2012}+1+\frac{x+4}{2013}+1+\frac{x+3}{2014}=\frac{x+2}{2015}+1+\frac{x+1}{2016}+1+\frac{x}{2017}+1\)
\(\Leftrightarrow\frac{x+2017}{2012}+\frac{x+2017}{2013}+\frac{x+2017}{2014}=\frac{x+2017}{2015}+\frac{x+2017}{2016}+\frac{x+2017}{2017}\)
\(\Leftrightarrow\frac{x+2017}{2012}+\frac{x+2017}{2013}+\frac{x+2017}{2014}-\frac{x+2017}{2015}-\frac{x+2017}{2016}-\frac{x+2017}{2017}=0\)
\(\Leftrightarrow\left(x+2017\right)\left(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}-\frac{1}{2016}-\frac{1}{2017}\right)=0\)
\(\text{Mà
}\)\(\left(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}-\frac{1}{2016}-\frac{1}{2017}\right)\ne0\)
\(\text{Nên : }\) x + 2017 = 0
=> x = -2017