Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x-1}{2012}+\dfrac{x-2}{2013}+\dfrac{x-3}{2014}=\dfrac{x-4}{2015}+\dfrac{x-5}{2016}+\dfrac{x-6}{2017}\)
\(\Leftrightarrow\left(\dfrac{x-1}{2012}+1\right)+\left(\dfrac{x-2}{2013}+1\right)+\left(\dfrac{x-3}{2014}+1\right)=\left(\dfrac{x-4}{2015}+1\right)+\left(\dfrac{x-5}{2016}+1\right)+\left(\dfrac{x-6}{2017}+1\right)\)
\(\Leftrightarrow\dfrac{x+2011}{2012}+\dfrac{x+2011}{2013}+\dfrac{x+2011}{2014}-\dfrac{x+2011}{2015}-\dfrac{x+2011}{2016}-\dfrac{x+2011}{2017}=0\)
\(\Leftrightarrow\left(x+2011\right)\left(\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}-\dfrac{1}{2015}-\dfrac{1}{2016}-\dfrac{1}{2017}\right)=0\)
\(\Leftrightarrow x=-2011\)( do \(\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}-\dfrac{1}{2015}-\dfrac{1}{2016}-\dfrac{1}{2017}\ne0\))
cộng 1 vào mỗi tỉ số ta được:
\(\frac{x+1}{2016}+1+\frac{x+2}{2015}+1+\frac{x+3}{2014}+1=\frac{x+4}{2013}+1+\frac{x+5}{2012}+\frac{x+6}{2011}\)
=>\(\frac{x+1}{2016}+\frac{2016}{2016}+\frac{x+2}{2015}+\frac{2015}{2015}+\frac{x+3}{2014}+\frac{2014}{2014}=\frac{x+4}{2013}+\frac{2013}{2013}+\frac{x+5}{2012}+\frac{2012}{2012}+\frac{x+6}{2011}+\frac{2011}{2011}\)
=>
\(\frac{x+2017}{2016}+\frac{x+2017}{2015}+\frac{x+2017}{2014}=\frac{x+2017}{2013}+\frac{x+2017}{2012}+\frac{x+2017}{2011}\)
=>
\(\frac{x+2017}{2016}+\frac{x+2017}{2015}+\frac{x+2017}{2014}-\left(\frac{x+2017}{2013}+\frac{x+2017}{2012}+\frac{x+2017}{2011}\right)=0\)
=>
\(\frac{x+2017}{2016}+\frac{x+2017}{2015}+\frac{x+2017}{2014}-\frac{x+2017}{2013}-\frac{x+2017}{2012}-\frac{x+2017}{2011}=0\)
=>(x+2017).(1/1016+1/2015+1/2014-1/2013-1/2012-1/2011)=0
dễ thấy 1/2016<1/2015<1/2014<1/2013<1/2012<1/2011
=>1/2016+...-1/2011 khác 0
=>x+2017=0
=>x=-2017
nhớ tick
a: Sửa đề: \(\dfrac{2x-1}{11}+\dfrac{2x-2}{12}+\dfrac{2x-3}{13}=\dfrac{2x+5}{5}+\dfrac{2x+7}{3}+\dfrac{2x+4}{6}\)
\(\Leftrightarrow\dfrac{2x-1}{11}+1+\dfrac{2x-2}{12}+1+\dfrac{2x-3}{13}+1=\dfrac{2x+5}{5}+1+\dfrac{2x+7}{3}+1+\dfrac{2x+4}{6}+1\)
=>2x+10=0
hay x=-5
b: \(\dfrac{x-1}{2016}+\dfrac{x-2}{2015}+\dfrac{x-3}{2014}+\dfrac{x-4}{2013}+\dfrac{x-5}{2012}-5=0\)
\(\Leftrightarrow\left(\dfrac{x-1}{2016}-1\right)+\left(\dfrac{x-2}{2015}-1\right)+\left(\dfrac{x-3}{2014}-1\right)+\left(\dfrac{x-4}{2013}-1\right)+\left(\dfrac{x-5}{2012}-1\right)=0\)
=>x-2017=0
hay x=2017
a: Sửa đề: \(\dfrac{2x-1}{11}+\dfrac{2x-2}{12}+\dfrac{2x-3}{13}=\dfrac{2x+5}{5}+\dfrac{2x+7}{3}+\dfrac{2x+4}{6}\)
\(\Leftrightarrow\dfrac{2x-1}{11}+1+\dfrac{2x-2}{12}+1+\dfrac{2x-3}{13}+1=\dfrac{2x+5}{5}+1+\dfrac{2x+7}{3}+1+\dfrac{2x+4}{6}+1\)
=>2x+10=0
hay x=-5
b: \(\dfrac{x-1}{2016}+\dfrac{x-2}{2015}+\dfrac{x-3}{2014}+\dfrac{x-4}{2013}+\dfrac{x-5}{2012}-5=0\)
\(\Leftrightarrow\left(\dfrac{x-1}{2016}-1\right)+\left(\dfrac{x-2}{2015}-1\right)+\left(\dfrac{x-3}{2014}-1\right)+\left(\dfrac{x-4}{2013}-1\right)+\left(\dfrac{x-5}{2012}-1\right)=0\)
=>x-2017=0
hay x=2017