K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2017

n>=2 hiển nhiên n khác không rồi thừa quá.

​A=(n-1)(n)(n+1)(n+2)

17 tháng 2 2017

giải giúp mk với ! huhu khocroi

17 tháng 2 2017

n(n+1)(n+2)

1 tháng 5 2019

Ta có :

n3 + n + 2 = ( n3 + 1 ) + ( n + 1 )

= ( n + 1 ) ( n2 - n + 1 ) + ( n + 1 )

= ( n + 1 ) ( n2 - n + 2 )

Ta thấy n + 1 > 1 ; n2 - n + 2 > 1 nên n3 + n + 2 là hợp số

1 tháng 5 2019

 Do n là số tự nhiên khác 0 =) n = 2k hoặc 2k + 1 với k là stn

(+)  Nếu n = 2k =)  n^3 + n + 2 = (2k)^3 + 2k + 2 chia hết cho 2     (1)

(+)  Nếu n = 2k + 1 =)  n^3 + n + 2 = lẻ + lẻ +chẵn = chẵn chia hết cho 2     (2)

    Từ (1) và (2) ta có điều phải chứng minh

6 tháng 7 2018

Ta có:

n2 là số chính phương

Mà n khác 0

\(\Rightarrow\)Có 2 trường hợp:

TH1: n là số chẵn

Ví dụ: n = 2

\(\Rightarrow n^2+n+1=2^2+2+1=4+2+1=7\)

Mà 7 không có số nào mũ 2 bằng

\(\Rightarrow n^2+n+1\)là số lẻ và \(n^2+n+1\)không thể là số chính phương

TH2:

n là số lẻ

Ví dụ: n = 3

\(\Rightarrow n^2+n+1=3^2+3+1=9+3+1=13\)

Mà 13 không có số nào mũ 2 bằng cả

\(\Rightarrow n^2+n+1\)là số lẻ và không thể là số chính phương

Qua 2 trường hợp trên, ta kết luận: với n là số tự nhiên khác 0 thì \(n^2+n+1\)là số lẻ và không thể là số chính phương

29 tháng 10 2017

2 tháng 8 2019

a)\(n^4+4\)

\(=\left(n^4-2n^3+2n^2\right)+\left(2n^3-4n^2+4n\right)+\left(2n^2-4n+4\right)\)

\(=n^2\left(n^2-2n+2\right)+2n\left(n^2-2n+2\right)+2\left(n^2-2n+2\right)\)

\(=\left(n^2-2n+2\right)\left(n^2+2n+2\right)\)

2 tháng 8 2019

Làm nốt

Ta có:\(A=\left(n^2-2n+2\right)\left(n^2+2n+2\right)\)

Để A là số nguyên tố nên 1 trong 2 thừa số phải bằng 1 và số còn lại phải là số nguyên tố

Do \(n^2-2n+2< n^2+2n+2\)nên \(n^2-2n+2=1\)

\(\Leftrightarrow n^2-2n+1=0\)

\(\Leftrightarrow\left(n-1\right)^2=0\)

\(\Leftrightarrow n=1\)

Thay n=1 vào \(n^2+2n+2\) ta được \(n^2+2n+2=5\) là số nguyên tố

Vậy n=1