K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2019

Câu 8 :

\(N=\left(\frac{x-1}{\left(x-1\right)^2+x}-\frac{2}{x-2}\right):\left(\frac{\left(x-1\right)^4+2}{\left(x-1\right)^3-1}-x+1\right)\)

Đặt \(x-1=a\)

\(N=\left(\frac{a}{a^2+x}-\frac{2}{a-1}\right):\left(\frac{a^4+2}{a^3-1}-a\right)\)

\(N=\frac{a\left(a-1\right)-2\left(a^2+x\right)}{\left(a^2+x\right)\left(a-1\right)}:\frac{a^4+2-a\left(a^3-1\right)}{a^3-1}\)

\(N=\frac{a^2-a-2a^2-2x}{\left(a^2+x\right)\left(a-1\right)}:\frac{a^4+2-a^4+a}{a^3-1}\)

\(N=\frac{-a^2-a-2x}{\left(a^2+x\right)\left(a-1\right)}\cdot\frac{\left(a-1\right)\left(a^2+a+1\right)}{2+a}\)

\(N=\frac{-\left(a^2+a+2x\right)\left(a^2+a+1\right)}{\left(a^2+x\right)\left(2+a\right)}\)

\(N=\frac{-\left[\left(x-1\right)^2+x-1+2x\right]\left[\left(x-1\right)^2+x-1+1\right]}{\left[\left(x-1\right)^2+x\right]\left(2+x-1\right)}\)

\(N=\frac{-\left(x^2+x\right)\left(x^2-x+1\right)}{\left(x^2-x+1\right)\left(x+1\right)}\)

\(N=\frac{-x\left(x+1\right)}{x+1}\)

\(N=-x\)( đpcm )

16 tháng 6 2019

Câu 9 : Tìm giá trị nhỏ nhất của biểu thức :

\(P=\frac{x^2}{x+4}\cdot\left(\frac{x^2+16}{x}+8\right)+9\)

Bài làm :

\(P=\frac{x^2}{x+4}\cdot\frac{x^2+8x+16}{x}+9\)

\(P=\frac{x^2\left(x+4\right)^2}{x\left(x+4\right)}+9\)

\(P=x\left(x+4\right)+9\)

\(P=x^2+4x+9\)

\(P=\left(x+2\right)^2+5\ge5\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=-2\)

26 tháng 6 2018

ta có n(n+5)-(n-3)(n+2)

=  n2+5n-(n2-n-6)

=n2+5n-n2+n+6

= 6n-6

=6(n-1)

=> 6(n-1) chia hết cho 6

hay n(n+5)-(n-3)(n+2) cũng chia hết cho 6

nhớ k giùm mình nha

25 tháng 6 2018

Mong các bạn sớm giải ra, mình cần cho buổi chiều ngày mai gấp, nếu bạn nào giải được mình sẽ k đúng cho và kết bạn vs bạn đó nha! Cảm phiền các bạn !!!!!!! Giúp mình với nha!

26 tháng 1 2017

n>=2 hiển nhiên n khác không rồi thừa quá.

​A=(n-1)(n)(n+1)(n+2)

5 tháng 1 2019

chị khẳng định bài này quá đơn giản nhé

5 tháng 1 2019

\(A=\left(9n+2014\right)^2-100n^2\)

\(A=\left(9n+2014\right)^2-\left(10n\right)^2\)

\(A=\left(9n+2014-10n\right)\left(9n+2014+10n\right)\)

\(A=\left(2014-n\right)\left(2014+19n\right)\)

Để \(A⋮2019\)thì :

\(\orbr{\begin{cases}2014-n⋮2014\\2014+19n⋮2014\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}n⋮2014\\19n⋮2014\end{cases}}\)

Kết hợp với điều kiện n nhỏ nhất, ta có :

\(\orbr{\begin{cases}n=0\\n=0\end{cases}}\)

Vậy n = 0

19 tháng 2 2017

4

19 tháng 2 2017

có người giải rồi mà