Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: a(a+1)(a+2)
b: \(\left(2k+1\right)^2+\left(2a+1\right)^2\)
c: (3k+1)/(3k+2)
d: \(\left(a+b\right)^n\)
a) \(n\left(n+1\right)\left(n+2\right)\left(n\in Z\right)\)
b) \(\left(2a+1\right)^2+\left(2b+1\right)^2\left(a,b\in Z\right)\)
c) \(\dfrac{3x+1}{3y+2}\left(x,y\in Z\right)\) hay \(\dfrac{3x+2}{3y+1}\left(x,y\in Z\right)\)
d) \(\left(a+b\right)^n\)
Gọi thương của 2 phép chia này là x
Ta có:
A : 63 = x dư 20 => A = 63 . x + 20 (1) (dấu . là dấu nhân)
A : 65 = x dư 8 => A = 65 . x + 8 (2)
Từ (1) , (2) => 63x + 20 = 65x + 8
=> 20 - 8 = 65x - 63x (chuyển vế)
=> 12 = 2x
=> x = 12 : 2 = 6
Thay x vào (1) [hoặc (2)], ta được:
63 . 6 + 20 = 398
hoặc: 65 . 6 + 8 = 398
Vậy số A cần tìm = 398
Khi chia a cho 44 thì đc thương và số dư = nhau: a = 44q + q => a = 45q
Khi chia a cho 53 thì đc thương và số dứ = nhau: a = 53p + p =>a = 54p
a khác 0 và nhỏ nhất thỏa mãn 2 tính chất trên
nên a =BCNN(45,54)
=> a= a= 33 x 3 x 5 = 270
Vậy a = 270