Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn thiếu đề thì phải: x>y>0.
Ta có : \(3x^2+3y^2=10xy\)
=>\(x^2+y^2=\frac{10xy}{3}\)
Ta có x>y>0=>x-y>0 và x+y>0
=>P dương. (1)
Ta có P2=\(\frac{\left(x-y\right)^2}{\left(x+y\right)^2}\)\(=\frac{x^2-2xy+y^2}{x^2+2xy+y^2}=\frac{\frac{10xy}{3}-2xy}{\frac{10xy}{3}+2xy}=\frac{\frac{4}{3}}{\frac{16}{3}}=\frac{1}{4}\)(2)
Từ (1) và (2) => \(P=\frac{1}{2}\)
Bài làm:
Ta có: \(4x^2-4x-3=0\)
\(\Leftrightarrow\left(4x^2-4x+1\right)-4=0\)
\(\Leftrightarrow\left(2x-1\right)^2-2^2=0\)
\(\Leftrightarrow\left(2x-3\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=0\\2x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-\frac{1}{2}\end{cases}}\)
Ta có : \(4x^2-4x-3=0\)
\(\Leftrightarrow\left(4x^2-4x+1\right)-4=0\)
\(\Leftrightarrow\left(2x-1\right)^2=4\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=2\\2x-1=-2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{3}{2}\\x=-\frac{1}{2}\end{cases}}\)
Vậy \(x\in\left\{\frac{3}{2};-\frac{1}{2}\right\}\)
\(5x^2+10y^2-6xy-4x-2y+3\)
\(=\left(x^2-6xy+9y^2\right)+\left(4x^2-4x+1\right)+\left(y^2-2y+1\right)+1\)
\(=\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1>0\) (đpcm)
p/s: chúc bạn học tốt
Hi hi mik cảm ơn bn và mik cx chúc bn học tốt nha!!!^-^!!!
Ta có : \(x^3+3x^2+3x=0\)
\(\Leftrightarrow x.\left(x^2+3x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2+3x+3=0\end{cases}\Leftrightarrow}x=0\)
x3 + 3x2 + 3x = 0
<=> x( x2 + 3x + 3 ) = 0
<=> \(\orbr{\begin{cases}x=0\\x^2+3x+3=0\left(1\right)\end{cases}}\)
Ta có (1) = x2 + 3x + 3
= ( x2 + 3x + 9/4 ) + 3/4
= ( x + 3/2 )2 + 3/4 ≥ 3/4 > 0 ∀ x
=> (1) vô nghiệm
Vậy phương trình có nghiệm duy nhất là x = 0