K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2016

Bạn thiếu đề thì phải:  x>y>0.

Ta có : \(3x^2+3y^2=10xy\)

=>\(x^2+y^2=\frac{10xy}{3}\)

Ta có x>y>0=>x-y>0 và x+y>0

=>P dương.   (1)

Ta có P2=\(\frac{\left(x-y\right)^2}{\left(x+y\right)^2}\)\(=\frac{x^2-2xy+y^2}{x^2+2xy+y^2}=\frac{\frac{10xy}{3}-2xy}{\frac{10xy}{3}+2xy}=\frac{\frac{4}{3}}{\frac{16}{3}}=\frac{1}{4}\)(2)

Từ (1) và (2) => \(P=\frac{1}{2}\)

31 tháng 12 2019

dễ mà bn. chuyển 10xy sang sau đó phân tích đa thức thành nhân tử

31 tháng 12 2019

\(P=\frac{y-x}{x+y}\)

\(\Rightarrow P^2=\frac{3\left(y-x\right)^2}{3\left(x+y\right)^2}\)

\(P^2=\frac{3\left(y^2-2xy+x^2\right)}{3\left(x^2+2xy+y^2\right)}\)

\(P^2=\frac{3x^2+3y^2-6xy}{3x^2+3y^2+6xy}\)

Thay \(3x^2+3y^2=10xy\)vào \(P^2=\frac{3x^2+3y^2-6xy}{3x^2+3y^2+6xy}\) ta được :

\(P^2=\frac{3x^2+3y^2-6xy}{3x^2+3y^2+6xy}\)

\(P^2=\frac{10xy-6xy}{10xy+6xy}\)

\(P^2=\frac{4xy}{16xy}\)

\(P^2=\frac{1}{4}\)

\(\Leftrightarrow P=\frac{1}{2}\)

Vậy \(P=\frac{y-x}{x+y}=\frac{1}{2}\Leftrightarrow\hept{\begin{cases}x>y>0\\3x^2+3y^2=10xy\end{cases}}\)

13 tháng 12 2016

Có: \(3x^2+3y^2=10xy\)

\(\Leftrightarrow3x^2-9xy-xy+3y^2=0\)

\(\Leftrightarrow3x\left(x-3y\right)-y\left(x-3y\right)=0\)

\(\Leftrightarrow\left(x-3y\right)\left(3x-y\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3y=0\\3x-y=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=3y\left(KTM:y>x\right)\\3x=y\left(tm\right)\end{cases}}\)

Với \(3x=y\) , ta có: \(K=\frac{x+y}{x-y}=\frac{x+3x}{x-3x}=\frac{4x}{-2x}=-2\)

13 tháng 12 2016

K2= (\(\frac{X+Y}{X-Y}\))2 = \(\frac{\left(x+y\right)^2}{\left(x-y\right)^2}\)\(\frac{x^2+2xy+y^2}{x^2-2xy+y^2}\)

\(\frac{3x^2+6xy+3y^2}{3x^2-6xy+3y^2}\)\(\frac{10xy+6xy}{10xy-6xy}\)\(\frac{16xy}{4xy}\)= 4

=> K = -2 hoặc 2

mà y>x>0 nên K =\(\frac{x+y}{x-y}\)<0

=> K = -2

15 tháng 12 2016

sao giống câu hỏi của mình thế chỉ khác số bạn biết làm ko chỉ mình đikhocroikhocroi

29 tháng 12 2019

\(P=\frac{y-x}{x+y}\)

\(\Rightarrow P^2=\frac{3\left(y-x\right)^2}{3\left(x+y\right)^2}\)

\(P^2=\frac{3\left(y^2-2xy+x^2\right)}{3\left(x^2+2xy+y^2\right)}\)

\(P^2=\frac{3x^2+3y^2-6xy}{3x^2+3y^2+6xy}\)

Thay \(3x^2+3y^2=10xy\) vào \(P^2=\frac{3x^2+3y^2-6xy}{3x^2+3y^2+6xy}\) , ta được :

\(P^2=\frac{3x^2+3y^2-6xy}{3x^2+3y^2+6xy}\)

\(P^2=\frac{10xy-6xy}{10xy+6xy}\)

\(P^2=\frac{4xy}{16xy}\)

\(P^2=\frac{1}{4}\)

\(\Leftrightarrow P=\frac{1}{2}\)

Vậy \(P=\frac{y-x}{x+y}=\frac{1}{2}\Leftrightarrow\left\{{}\begin{matrix}x>y>0\\3x^2+3y^2=10xy\end{matrix}\right.\)

1 tháng 1 2020

\(x^2+y^2+xy+3x-3y+9=0\)

\(\Leftrightarrow2x^2+2y^2+2xy+6x-6y+18=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2+6x+9\right)+\left(y^2-6y+9\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x+3\right)^2+\left(y-3\right)^2=0\)

\(\Leftrightarrow x=-3;y=3\)

Thay vào:\(Q=\left(3-3+1\right)^{2017}+\left(2-3\right)^{2018}=2\)

Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)

\(\Leftrightarrow x^2+2x+1+y^2-2y+1+2x^2+4xy+2y^2=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x^2+2xy+y^2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2=0\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\left(y-1\right)^2\ge0\forall y\)

\(2\left(x+y\right)^2\ge0\forall x,y\)

Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2\ge0\forall x,y\)

Dấu '=' xảy ra khi 

\(\left\{{}\begin{matrix}x+1=0\\y-1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\\-1+1=0\left(đúng\right)\end{matrix}\right.\)

Thay x=-1 và y=1 vào biểu thức \(M=\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\), ta được: 

\(M=\left(-1+1\right)^{2016}+\left(-1+2\right)^{2017}+\left(1-1\right)^{2018}\)

\(=0^{2016}+1^{2017}+0^{2018}=1\)

Vậy: M=1