Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2015.2017=\left(2016-1\right)\left(2016+1\right)=2016^2-1\)
\(< 2016^2=B\)
Nên A<B
\(B=2016^2\)
\(\Rightarrow B=\left(2017-1\right)^2\)
\(\Rightarrow B=2017^2-4034+1=2017^2-4033\)(1)
Lại Có :
\(A=2015.2017=\left(2017-2\right).2017\)
\(\Rightarrow A=2017^2-4034\)(2)
Từ (1) và (2) => B>A
\(A=4\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(=\frac{1}{2}\left(3^{128}-1\right)< B\)
\(A=4\left(3^2+1\right)\left(3^4+1\right)....\left(3^{64}+1\right)\)
\(\Rightarrow2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(=\left(3^4-1\right)\left(3^4+1\right).....\left(3^{64}+1\right)=\left(3^{64}-1\right)\left(3^{64}+1\right)=3^{128}-1=B\)
\(\Rightarrow A< B\)
\(A^2=3940+2\cdot\sqrt{1970^2-1}\)
\(B^2=3940+2\cdot\sqrt{1970^2}\)
mà \(1970^2-1< 1970^2\)
nên A<B
Còn thêm cách nào khác ko ạ? Nếu có thì giúp em nha. Cảm ơn anh nhiều!
\(A=4\left(3^2+1\right)\left(3^4+1\right)....\left(3^{64}+1\right)\)
\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)....\left(3^{64}+1\right)\)
\(2A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{22}+1\right)\left(3^{64}+1\right)\)
\(2A=\left(3^{64}-1\right)\left(3^{64}+1\right)\)
\(2A=3^{128}-1\Rightarrow A=\frac{3^{128}-1}{2}< 3^{128}-1=B\)
Vậy \(A< B\)
Chúc bạn học tốt !!!
A.(32-1)=4.(32-1)(32+1)(34+1)...(364+1)=4.(34-1)(34+1)...(364+1)= ... =4.(3128-1)
<=>8A=4B <=>2A=B =>B>A
Ta có: \(2015.2017=\left(2016-1\right).\left(2016+1\right)=2016^2-1^2\)(1)
(À mà bạn hình như viết sai thì phải, phải là so sánh \(2015.2017\) và \(2016^2\)đúng không?)
Từ (1) suy ra: \(2016^2-1< 2016^2\)
Vậy: \(2015.2017< 2016^2\)
Ta có : A = 1999 x 2001 = 1999 x (1 + 2000) = 1999 x 2000 + 1999
B = 2000 x 2000 = 2000 x (1999 + 1) = 2000 x 1999 + 2000
Vậy A < B
Sorry mk chưa đoc kĩ đề mk làm lại nhá
Áp dụng hàng đẳng thức (a - b)(a + b) = a2 - b2
Ta có : A = (2000 - 1)(2000 + 1) = 20002 - 1
Mà B = 20002
Nên A < B
Áp dụng hàng đẳng thức (a - b)(a + b) = a2 - b2
Ta có : A = (2012 - 1)(2012 + 1) = 20122 - 1
Mà B = 20122
Nên A < B
`A=4(3^2+1)(3^4+1)...(3^64+1)`
`=>2A=(3^2-1)(3^2+1)(3^4+1)...(3^64+1)`
- Ta có:
`(3^2-1)(3^2+1)=3^4-1`
`(3^4-1)(3^4+1)=3^16-1`
`....`
`(3^64-1)(3^64+1)=3^128-1`
Suy ra `2A=3^128-1=B`
`=>A<B`
\(A=2015.2017=\left(2016-1\right)\left(2016+1\right)=2016^2-1\)
\(\Rightarrow A< B\)