K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2016

xl minh moi hoc lop 5-6 thui hì hì

22 tháng 6 2016

Ta có: \(2015.2017=\left(2016-1\right).\left(2016+1\right)=2016^2-1^2\)(1)

(À mà bạn hình như viết sai thì phải, phải là so sánh \(2015.2017\) và \(2016^2\)đúng không?)

Từ (1) suy ra: \(2016^2-1< 2016^2\)

Vậy: \(2015.2017< 2016^2\)

11 tháng 10 2016

\(x^4+y^4+\left(x+y\right)^4=2\left(x^4+y^4+2x^3y+3x^2y^2+2xy^3\right)\)

\(=2\left(\left(x^4+y^4+2x^2y^2\right)+\left(2x^3y+2xy^3\right)+x^2y^2\right)\)

\(=2\left(\left(x^2+y^2\right)^2+2xy\left(x^2+y^2\right)+x^2y^2\right)\)

\(=2\left(x^2+y^2+xy\right)^2\)

11 tháng 10 2016

Đặt x2 + xy + y2 = a2 ; x + y = b.Ta có :

a4 = (a2)2 = (x2 + xy + y2)2 = x4 + y4 + x2y2 + 2x3y + 2xy2 + 2x2y2 = x4 + y4 + x2y2 + 2xy(x2 + y2 + xy) = x4 + y4 + x2y2 + 2xya2 (1)

mà b = x + y

=> b2 = x2 + y2 + 2xy = a2 + xy => b4 = a4 + x2y2 + 2a2xy .Từ (1) và (2) ,ta có :

2a4 = x4 + y4 + a4 + x2y2 + 2xya2 = x4 + y4 + b4.Thay a2 = x2 + xy + y2 ; b = x + y,ta có đpcm

<=> 

19 tháng 6 2018

\(A=2015.2017=\left(2016-1\right)\left(2016+1\right)=2016^2-1\)

\(< 2016^2=B\)

Nên A<B

19 tháng 6 2018

\(B=2016^2\)

\(\Rightarrow B=\left(2017-1\right)^2\)

\(\Rightarrow B=2017^2-4034+1=2017^2-4033\)(1)

Lại Có :

\(A=2015.2017=\left(2017-2\right).2017\)

\(\Rightarrow A=2017^2-4034\)(2)

Từ (1) và (2) =>  B>A

24 tháng 10 2021

d: \(\left(x-2\right)\left(x^2+2x+4\right)\left(x+2\right)\left(x^2-2x+4\right)\)

\(=\left(x^3-8\right)\left(x^3+8\right)\)

\(=x^6-64\)

19 tháng 8 2021

c) \(\left(x^2-y^2\right)^2=x^4-2x^2y^2+y^4\)

c) \(\left(x^2+3^2\right)^2=x^4+18x+81\)

c) \(\left(2x^2+1\right)^2=4x^4+4x^2+1\)

c) \(\left(3x-y^2\right)^2=9x^2-6xy^2+y^4\)

c) \(\left(x+2y^2\right)^2=x^2+4xy^2+4y^4\)

c) \(\left(3x\right)^2-y^2=\left(3x-y\right)\left(3x+y\right)\)

c) \(\left(2x+3y^2\right)^2=4x^2+12xy^2+9y^4\)

c) \(\left(4x-2y^2\right)^2=16x^2-16xy^2+4y^4\)

c) \(\left(4x^2-2y\right)^2=16x^4-16x^2y+4y^2\)

19 tháng 8 2021

c) \(\left(\dfrac{1}{x}-5\right)\left(\dfrac{1}{x}+5\right)=\dfrac{1}{x^2}-25\)

c) \(\left(x-\dfrac{3}{2}\right)\left(x+\dfrac{3}{2}\right)=x^2-\dfrac{9}{4}\)

c) \(\left(\dfrac{x}{3}-\dfrac{y}{4}\right)\left(\dfrac{x}{3}+\dfrac{y}{4}\right)=\dfrac{x^2}{9}-\dfrac{y^2}{16}\)

c) \(\left(\dfrac{x}{y}-\dfrac{2}{3}\right)\left(\dfrac{x}{y}+\dfrac{2}{3}\right)=\dfrac{x^2}{y^2}-\dfrac{4}{9}\)

c) \(\left(\dfrac{x}{2}+\dfrac{y}{3}\right)\left(\dfrac{y}{3}-\dfrac{x}{2}\right)=\dfrac{y^2}{9}-\dfrac{x^2}{4}\)

c) \(\left(2x-\dfrac{2}{3}\right)\left(\dfrac{2}{3}+2x\right)=4x^2-\dfrac{4}{9}\)

c) \(\left(2x+\dfrac{3}{5}\right)\left(\dfrac{3}{5}-2x\right)=\dfrac{9}{25}-4x^2\)

c) \(\left(\dfrac{1}{2}x-\dfrac{4}{3}\right)\left(\dfrac{4}{4}+\dfrac{1}{2}x\right)=\dfrac{1}{4}x^2-\dfrac{16}{9}\)

c) \(\left(\dfrac{2}{3}x^2-\dfrac{y}{2}\right)\left(\dfrac{2}{3}x^2+\dfrac{y}{2}\right)=\dfrac{4}{9}x^4-\dfrac{y^2}{4}\)

6 tháng 10 2020

\(\frac{1}{4}x^4-9\)

\(=\left(\frac{1}{2}x^2\right)^2-3^2\)

\(=\left(\frac{1}{2}x^2-3\right)\left(\frac{1}{2}x^2+3\right)\)

22 tháng 7 2021

2) 9x2+ 12x+ 4

<=>(3x)2+ 2.3x.2+ 2<=>(3x+ 2)2

3) 4x4+ 20x2+ 25

<=>(2x2)2+ 2.2x2.5+ 52 <=>(2x2+5)2

4) 25x2- 20xy+ 4y2

<=> (5x)2- 2.5x.2y+ (2y)2<=> (5x-2y)2

5) 9x4- 12x2y+ 4y2

<=> (3x2)2- 2.3x2.2.y+ (2y)2<=> (3x2- 2y)2

6) 4x4- 16x2y3+ 16y6

<=> (2x2)2- 2.2x2.4y3+ (4y3)2<=> (2x2- 4y3)2

7) 9x4- 12x5+ 4x6

<=> (3x2)2- 2.3x2.2x3+ (2x3)2<=> (3x2- 2x3)2

 

11 tháng 9 2017

(a+b)3-(a-b)3=a3+3a2b+3ab2+b3-(a3-3a2b+3ab2-b3)

                    =a3+3a2b+3ab2+b3-a3+3a2b-3ab2+b3

                        =6a2b+2b3

11 tháng 9 2017

Áp dụng hđt a3-b3=(a-b)(a2+ab+b2) ấy

\(\left(a+b\right)^3-\left(a-b\right)^3=\left[\left(a+b\right)-\left(a-b\right)\right]\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)

\(=\left(a+b-a+b\right)\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)\)

\(=2b\left(3a^2+b^2\right)\)