K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2016

Không mất tính tổng quát ta giả sử \(a\ge b\ge c\)

Vì \(a^2+b^2+c^2=1\Rightarrow lal,lbl,lcl\le1\)

\(\Rightarrow\hept{\begin{cases}a^2\ge a^3\\b^2\ge b^3\\c^2\ge c^3\end{cases}}\Rightarrow a^2+b^2+c^2\ge a^3+b^3+c^3=1\)

Dấu = xảy ra khi \(\hept{\begin{cases}a^2=a^3\\b^2=b^3\\c^2=c^3\end{cases}}\)

Mà theo giả thuyết thì \(\hept{\begin{cases}a\ge b\ge c\\a^2+b^2+c^2=1\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=c=0\end{cases}}}\)

Vậy C = 1

Tương tự với các trường hợp giả sử về a,b,c khác ta luôn có giá trị C = 1

11 tháng 10 2016

Giả sử\(a\ge b\ge c\)(ko mất tính tổng quát) .Ta có :\(\hept{\begin{cases}a^2+b^2+c^2=1\\a^2;b^2;c^2\ge0\end{cases}\Rightarrow a^2;b^2;c^2\le1\Rightarrow|a|;|b|;|c|\le1\Rightarrow\hept{\begin{cases}a^2\ge a^3\\b^2\ge b^3\\c^2\ge c^3\end{cases}\Rightarrow}a^2+b^2+c^2\ge a^3+b^3+c^3=1}\)

\(\Rightarrow\hept{\begin{cases}a^2=a^3\\b^2=b^3\\c^2=c^3\end{cases}\Rightarrow\hept{\begin{cases}a,b,c\in\left\{0;1\right\}\\a^2+b^2+c^2=1\\a\ge b\ge c\end{cases}}\Rightarrow a=1;b=c=0\Rightarrow a^2+b^9+c^{1945}=1}\)

11 tháng 7 2016

thay a^3+b^3=(a+b)^3 -3ab(a+b) .Ta có : 

a^3+b^3+c^3-3abc=0 

<=>(a+b)^3 -3ab(a+b) +c^3 - 3abc=0 

câu 2:<=>[(a+b)^3 +c^3] -3ab.(a+b+c)=0 

<=>(a+b+c). [(a+b)^2 -c.(a+b)+c^2] -3ab(a+b+c)=0 

<=>(a+b+c).(a^2+2ab+b^2-ca-cb+c^2-3ab)... 

<=>(a+b+c).(a^2+b^2+c^2-ab-bc-ca)=0 

luôn đúng do a+b+c=0

11 tháng 7 2016

câu 1:(a+b+c)^3=((a+b)+c)^3=(a+b)^3+c^3+3(a+b)c(a+b+c)
=a^3+b^3+3ab(a+b)+c^3+3(a+b)c(a+b+c)
=a^3+b^3+c^3+3(a+b)(ab+c(a+b+c))
=a^3+b^3+c3^+3(a+b)(ab+ac+bc+c2)
=a^3+b^3+c^3+3(a+b)(a+c)(b+c)

CHÚC BẠN HỌC TỐT^^

3 tháng 12 2018

-- là giề

3 tháng 12 2018

a(b^3-c^3) +b(c^3-a^3)+c(a^3-b^3)

=> a(b-c)(b^2+bc+c^2)+bc^3-ba^3+ca^3-cb^3

=>a(b-c)(b^2+bc+c^2)-(cb^3-bc^3)-(ba^3-ca^3)

=>a(b-c)(b^2+bc+c^2)-bc(b-c)(b+c)-a^3(b-c)

=>(b-c)(ab^2+abc+ac^2-cb^2-bc^2-a^3)

=>(b-c)(

16 tháng 10 2016

\(\left(a+b+c\right)^3=\left(a+b\right)^3+3\left(a+b\right)c\left(a+b+c\right)+c^3\)

\(=a^3+3ab\left(a+b\right)+b^3+3c\left(a+b\right)\left(a+b+c\right)+c^3\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]=a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(\text{đ}pcm\right)\)

30 tháng 9 2020

a. Ta có : (x + y)[(x - y)2 + xy]

= (x + y)(x2 - 2xy + y2 + xy)

= (x + y)(x2 - xy + y2)

= x3 + y3 

b. Ta có : x3 + y3 - xy(x + y) 

= x3 + y3 - x2y - xy2

=x2(x - y) + y2(y - x)

= (x - y)(x2 - y2)

= (x - y)2.(x + y) đpcm

c) Ta có (x + y)3 - 3xy(x + y)

= (x + y)[(x + y)2 - 3xy)

= (x + y)(x2 + 2xy + y2 - 3xy)

= (x + y)(x2 - xy + y2) (đpcm)

30 tháng 9 2020

a) VP = ( x + y )( x2 - 2xy + y2 + xy ) = ( x + y )( x2 - xy + y2 ) = x3 + y3 = VT ( đpcm )

b) VP = ( x + y )( x - y )2 = ( x + y )( x2 - 2xy + y2 ) = x3 - 2x2y + xy2 + x2y - 2xy2 + y3 = x3 + y3 - x2y - xy2 = x3 + y3 - xy( x + y ) = VT ( đpcm )

c) VP = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 = x3 + y3 = ( x + y )( x2 - xy + y2 ) = VT ( đpcm )

8 tháng 10 2016

\(\left(a+b+c\right)^3\)

\(=\left[\left(a+b\right)+c\right]^3\)

\(VT=\left(a+b\right)^3+3c\left(a+b\right)\left(a+b+c\right)+c^3\)

\(=a^3+3ab\left(a+b\right)+b^2+3c\left(a+b\right)\left(a+b+c\right)+c^3\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)

=>đpcm

8 tháng 10 2016

nhân vp ra