K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2020

giúp với câu b)

6 tháng 3 2022

b, tam giác MCB ~ tam giác MBA (g.g) => BC/BA =MC/MD (vì MB=MD <= t/c 2 tiếp tuyến cắt nhau) (1)
tam giác MCD ~ tam giác MDA  (g.g) => MC/MD= DC/AD (2) 
Từ (1),(2) => BC/BA = DC/AD => BC.AD = DC.AB (đpcm) 
 

1: góc MAO+góc MBO=180 độ

=>MAOB nội tiếp

2: Xét ΔIBF và ΔIAB có

góc IBF=góc IAB

góc BIF chung

=>ΔIBF đồng dạng với ΔIAB

=>IB/IA=IF/IB

=>IB^2=IA*IF

30 tháng 1 2022

Từ một điểm M ở bên ngoài đường tròn tâm O, vẽ hai tiếp tuyến MA, MB với đường tròn (O)( A, B là các tiếp điểm). Gọi E là trung điểm của đoạn thẳng MA, tia EB cắt đường tròn (O) tại C. Tia MC cắt đường tròn (O) tại điểm thứ hai là D. Chứng minh rằng:

a. Tứ giác MAOB nội tiếp;

b. EA2 = EC.EB;

c. BD // MA.

24 tháng 5 2018

Bạn tự vẽ hình nha

a)Xét tứ giác MAOB có:

\(\widehat{MAO}\)=90'(vì MA là tiếp tuyến của (O))

\(\widehat{MBO}\)=90'(vì MB là tiếp tuyến của (O))

Suy ra \(\widehat{MAO}\)+\(\widehat{MBO}\)=90'+90'=180'

Vậy tứ giác MAOB nội tiếp

b)Xét tam giác ABM có:

MA=MB(tính chất hai tiếp tuyến cắt nhau)

Do đó tam giác MAB là tam giác cân tại M

c)Xét tam giác IBF và IAB có:

\(\widehat{BIA}\)là góc chung

\(\widehat{IBF}\)=\(\widehat{IAB}\)(cùng bằng 1/2 sđ\(\widebat{BF}\))

Do đó tam giác IBF đồng dạng với IAB

Suy ra \(\frac{IB}{IF}=\frac{IA}{IB}\)

<=>\(IB^2=IA.IF\)

23 tháng 5 2018

ai giúp mih với

 giups minh cau 1d, 2c , cam on nhieu1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.a) Chứng minh AEHF nội tiếpb) Chứng minh EC là tia phân giác của góc DEFc) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MDd) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của...
Đọc tiếp

 giups minh cau 1d, 2c , cam on nhieu

1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.

a) Chứng minh AEHF nội tiếp

b) Chứng minh EC là tia phân giác của góc DEF

c) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MD

d) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của (O)

 e) Đường thẳng qua D  song song với MF, cắt AB và AC lần lượt tại K và L. Chứng minh : M, K, L, O cùng thuộc một đường tròn.

2. Từ một điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB và AC đến (O) (B và C là các tiếp điểm) và một cát tuyến ADE không đi qua tâm O (D nằm giữa A và E), gọi I là trung điểm của DE. 
a) Chứng minh 5 điểm A;B;O;I;C cùng nằm trên một đường tròn suy ra IA là phân giác của góc BIC 
b) BC cắt AE tại K. Chứng minh KA.KI=KD.KE 
c) Qua C kẻ đường thẳng song với AB, đường này cắt các đướng thẳng BE, BD lần lượt tại P và Q. Chứng minh C là trung điểm của PQ. 
d) Đường thẳng OI cắt đường tròn (O) tại S và H. Đường thẳng HK cắt (O) tại điểm thứ hai là T. Chứng minh 3 điểm A, T, S thẳng hàng 

0
4 tháng 2 2022

Bạn xem lại đề giúp mình nha, vì đề ko có dữ kiện nào liên quan tới điểm C,D hết

18 tháng 1 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

A, B, I nhìn MO cố định dưới một góc bằng 90° nên A, B, I nằm trên đường tròn bán kính MO.

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

B và C cùng nằm trên một nửa mặt phẳng bờ chứa đường HI tạo với HI một góc bằng nhau nên tứ giác BCHI nội tiếp.

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

31 tháng 7 2017

a)

MA và MB là các tiếp tuyến của (O)

=> OM _I_ AB mà C thuộc OM

=> AC = BC 

OB = OA = OC = OD ( = R)

=> \(\Delta ACD\) vuông tại A và \(\Delta BCD\) vuông tại B

\(\Rightarrow\Delta ACD=\Delta BCD\left(ch-cgv\right)\)

\(\Rightarrow\Delta ACD~\Delta BCD\)

\(\Rightarrow\frac{AC}{BC}=\frac{AD}{BD}\)

\(\Rightarrow AC\times BD=AD\times BC\left(\text{đ}pcm\right)\)

b)

AI là đpg của \(\Delta ACD\)

\(\Rightarrow\frac{IC}{ID}=\frac{AC}{AD}\) mà \(\frac{AC}{AD}=\frac{BC}{BD}\)

\(\Rightarrow\frac{IC}{ID}=\frac{BC}{BD}\)

=> BI là đpg của \(\Delta BCD\) (đpcm)

31 tháng 5 2019

a) MA và MB là các tiếp tuyến của (O)

=> OM _I_ AB mà C thuộc OM

=> AC = BC 

OB = OA = OC = OD ( = R)

=> \Delta ACDΔACD vuông tại A và \Delta BCDΔBCD vuông tại B

\Rightarrow\Delta ACD=\Delta BCD\left(ch-cgv\right)⇒ΔACD=ΔBCD(ch−cgv)

\Rightarrow\Delta ACD~\Delta BCD⇒ΔACD ΔBCD

\Rightarrow\frac{AC}{BC}=\frac{AD}{BD}⇒BCAC​=BDAD​

\Rightarrow AC\times BD=AD\times BC\left(\text{đ}pcm\right)⇒AC×BD=AD×BC(đpcm)

b)

AI là đpg của \Delta ACDΔACD

\Rightarrow\frac{IC}{ID}=\frac{AC}{AD}⇒IDIC​=ADAC​ mà \frac{AC}{AD}=\frac{BC}{BD}ADAC​=BDBC​

\Rightarrow\frac{IC}{ID}=\frac{BC}{BD}⇒IDIC​=BDBC​

=> BI là đpg của \Delta BCDΔBCD (đpcm)