K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2022

Từ một điểm M ở bên ngoài đường tròn tâm O, vẽ hai tiếp tuyến MA, MB với đường tròn (O)( A, B là các tiếp điểm). Gọi E là trung điểm của đoạn thẳng MA, tia EB cắt đường tròn (O) tại C. Tia MC cắt đường tròn (O) tại điểm thứ hai là D. Chứng minh rằng:

a. Tứ giác MAOB nội tiếp;

b. EA2 = EC.EB;

c. BD // MA.

24 tháng 5 2018

Bạn tự vẽ hình nha

a)Xét tứ giác MAOB có:

\(\widehat{MAO}\)=90'(vì MA là tiếp tuyến của (O))

\(\widehat{MBO}\)=90'(vì MB là tiếp tuyến của (O))

Suy ra \(\widehat{MAO}\)+\(\widehat{MBO}\)=90'+90'=180'

Vậy tứ giác MAOB nội tiếp

b)Xét tam giác ABM có:

MA=MB(tính chất hai tiếp tuyến cắt nhau)

Do đó tam giác MAB là tam giác cân tại M

c)Xét tam giác IBF và IAB có:

\(\widehat{BIA}\)là góc chung

\(\widehat{IBF}\)=\(\widehat{IAB}\)(cùng bằng 1/2 sđ\(\widebat{BF}\))

Do đó tam giác IBF đồng dạng với IAB

Suy ra \(\frac{IB}{IF}=\frac{IA}{IB}\)

<=>\(IB^2=IA.IF\)

23 tháng 5 2018

ai giúp mih với

4 tháng 2 2022

Bạn xem lại đề giúp mình nha, vì đề ko có dữ kiện nào liên quan tới điểm C,D hết

1: góc MAO+góc MBO=180 độ

=>MAOB nội tiếp

2: Xét ΔIBF và ΔIAB có

góc IBF=góc IAB

góc BIF chung

=>ΔIBF đồng dạng với ΔIAB

=>IB/IA=IF/IB

=>IB^2=IA*IF

27 tháng 5 2018

giúp câu c

12 tháng 8 2018

1) Chứng minh: Tứ giác MAOB nội tiếp một đường tròn

Vẽ được các yếu tố để chứng minh phần (1).

Ta có M B O ^ = 90 0 ,   M A O ^ = 90 0  (theo t/c của tiếp tuyến và bán kính)

Suy ra:  M A O ^ + M B O ^ = 180 0 .Vậy tứ giác MAOB nội tiếp đường tròn.

2) Chứng minh: MN2 = NF. NA và MN = NH

Ta có A E / / M O ⇒ A E M ^ = E M N ^   mà   A E M ^ = M A F ^ ⇒ E M N ^ = M A F ^

Δ N M F   v à   Δ N A M có:  M N A ^ chung;  E M N ^ = M A F ^

nên  Δ N M F đồng dạng với  Δ N A M

⇒ N M N F = N A N M ⇒ N M 2 = N F . N A        1

Mặt khác có: A B F ^ = A E F ^ ⇒ A B F ^ = E M N   ^ h a y   H B F ^ = F M H ^  

=> MFHB là tứ giác nội tiếp

⇒ F H M ^ = F B M ^ = F A B ^   h a y   F H N ^ = N A H ^

Xét Δ N H F   &   Δ N A H   c ó   A N H   ^ c h u n g ;   N H F ^ = N A H ^

=> Δ N M F đồng dạng  Δ N A H ⇒ ⇒ N H N F = N A N H ⇒ N H 2 = N F . N A        2  

Từ (1) và (2) ta có NH = HM

3) Chứng minh:  H B 2 H F 2 − EF M F = 1 .

Xét Δ M AF  và Δ M E A  có: A M E ^  chung, M A F ^ = M E A ^

suy ra  Δ M AF  đồng dạng với  Δ M E A

⇒ M E M A = M A M F = A E A F ⇒ M E M F = A E 2 A F 2      (3)

Vì MFHB là tứ giác nội tiếp ⇒ M F B ^ = M H B ^ = 90 0 ⇒ B F E ^ = 90 0 A F H ^ = A H N ^ = 90 0 ⇒ A F E ^   = B F H ^  

Δ A E F  và Δ H B F  có: E F A ^ = B F H ^   ;   F E A ^ = F B A ^

suy ra  Δ A E F   ~   Δ H B F  

⇒ A E A F = H B H F ⇒ A E 2 A F 2 = H B 2 H F 2                (4)

 

Từ (3) và (4) ta có M E M F = H B 2 H F 2 ⇔ M F + F E M F = H B 2 H F 2 ⇔ 1 + F E M F = H B 2 H F 2 ⇔ H B 2 H F 2 − F E M F = 1