Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kí hiệu A là biến cố : "Quả lấy ra mầu đỏ"
B là biến cố : "Quả lấy ra ghi số chẵn"
a) Không gian mẫu \(\Omega=\left\{1,2,...,10\right\}\)
\(A=\left\{1,2,3,4,5,6\right\}\)
Từ đó : \(P\left(A\right)=\dfrac{6}{10}=\dfrac{3}{5}\)
Tiếp theo, \(B=\left\{2;4;6;8;10\right\}\) và \(A\cap B=\left\{2;4;6\right\}\)
Do đó : \(P\left(B\right)=\dfrac{5}{10}=\dfrac{1}{2};P\left(AB\right)=\dfrac{3}{10}\)
Ta thấy \(P\left(AB\right)=\dfrac{3}{10}=\dfrac{3}{5}.\dfrac{1}{2}=P\left(A\right)P\left(B\right)\)
Vậy A và B độc lập.
Rõ ràng trong hộp có 30 quả với 15 quả ghi số chẵn, 10 quả màu đỏ, 5 quả màu đỏ ghi số chẵn, 25 quả màu xanh hoặc ghi số lẻ. Vậy theo định nghĩa
Trong đó A, B, C, D là các biến cố tương ứng với các câu a), b), c) ,d).
Kí hiệu A là biến cố: "Quả lấy ra màu đỏ";
B là biến cố: "Quả lấy ra ghi số chẵn".
Không gian mẫu
Ω = {1, 2, ..., 10};
A = {1, 2, 3, 4, 5, 6}.
Từ đó:
Tiếp theo: B = {2, 4, 6, 8, 10} và A ∩ B = {2, 4, 6}.
Do đó:
Ta thấy
Vậy A và B độc lập.
Không gian mẫu: \(C_{15}^3=455\)
Số cách chọn 3 quả sao cho vừa khác màu vừa khác số:
\(4.4.4=64\)
Xác suất: \(P=\dfrac{64}{455}\)
Trong hộp có 30 quả với 15 quả ghi số chẵn, 10 quả mầu đỏ, 5 quả mầu đỏ ghi số chẵn, 25 quả mầu xanh hoặc ghi số lẻ. Vậy theo định nghĩa :
a) \(P\left(A\right)=\dfrac{15}{30}=\dfrac{1}{2}\)
b) \(P\left(B\right)=\dfrac{10}{30}=\dfrac{1}{3}\)
c) \(P\left(C\right)=\dfrac{5}{30}=\dfrac{1}{6}\)
d) \(P\left(D\right)=\dfrac{25}{30}=\dfrac{5}{6}\)
Đáp án B
Lấy ngẫu nhiên 1 quả cầu trong 9 quả cầu có
Gọi A là biến cố “ lấy được quả cầu được đánh số là chẳn”
Trong 9 quả cầu đánh số, có các số chẵn là 2; 4; 6; 8
suy ra n(A) = 4
Vậy P ( A ) = 4 9