K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 12 2018

Lời giải:

Gọi $I(a,b)$ là điểm thỏa mãn \(2\overrightarrow{IA}-\overrightarrow{IB}=\overrightarrow{0}\)

\(\Rightarrow 2(1-a, 2-b)-(-2-a, 1-b)=(0,0)\)

\(\Rightarrow \left\{\begin{matrix} 2(1-a)-(-2-a)=0\\ 2(2-b)-(1-b)=0\end{matrix}\right.\Rightarrow a=4; b=3\)

Vậy \(I(4,3)\)

\(|2\overrightarrow{MA}-\overrightarrow{MB}|=|2(\overrightarrow{MI}+\overrightarrow{IA})-(\overrightarrow{MI}+\overrightarrow{IB})|\)

\(=|\overrightarrow{MI}+(2\overrightarrow{IA}-\overrightarrow{IB})|=|\overrightarrow{MI}|\)

Để \(|2\overrightarrow{MA}-\overrightarrow{MB}|_{\min}\) thì \(|\overrightarrow{MI}|_{\min}\). Điều này xảy ra khi $M$ là chân đường cao kẻ từ $I$ đến trục hoành

\(\Rightarrow M=(4,0)\)

NV
26 tháng 12 2022

Do C thuôc trục hoành nên tọa độ có dạng \(C\left(c;0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AC}=\left(c+2;-4\right)\\\overrightarrow{BC}=\left(c-8;-4\right)\end{matrix}\right.\)

Do tam giác ABC vuông tại C \(\Rightarrow\overrightarrow{AC}.\overrightarrow{BC}=0\)

\(\Rightarrow\left(c+2\right)\left(c-8\right)+16=0\)

\(\Rightarrow c^2-6c=0\Rightarrow\left[{}\begin{matrix}c=0\\c=6\end{matrix}\right.\)

Vậy có 2 điểm C thỏa mãn là \(C\left(0;0\right)\) và \(C\left(6;0\right)\)

19 tháng 12 2021

undefined

19 tháng 12 2021

bạn xem thử đi nếu nó có sai thì mình xin lỗi=)))