Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi $I(a,b)$ là điểm thỏa mãn \(2\overrightarrow{IA}-\overrightarrow{IB}=\overrightarrow{0}\)
\(\Rightarrow 2(1-a, 2-b)-(-2-a, 1-b)=(0,0)\)
\(\Rightarrow \left\{\begin{matrix} 2(1-a)-(-2-a)=0\\ 2(2-b)-(1-b)=0\end{matrix}\right.\Rightarrow a=4; b=3\)
Vậy \(I(4,3)\)
\(|2\overrightarrow{MA}-\overrightarrow{MB}|=|2(\overrightarrow{MI}+\overrightarrow{IA})-(\overrightarrow{MI}+\overrightarrow{IB})|\)
\(=|\overrightarrow{MI}+(2\overrightarrow{IA}-\overrightarrow{IB})|=|\overrightarrow{MI}|\)
Để \(|2\overrightarrow{MA}-\overrightarrow{MB}|_{\min}\) thì \(|\overrightarrow{MI}|_{\min}\). Điều này xảy ra khi $M$ là chân đường cao kẻ từ $I$ đến trục hoành
\(\Rightarrow M=(4,0)\)
a) \(\overrightarrow{AB}\)=(-1-2;2-1)
<=>\(\overrightarrow{AB}\)(-3;1)
b) ta có:
D(x;y)\(\left\{{}\begin{matrix}3\left(-3\right)-2\left(x-\left(-1\right)\right)+x-3=0\\3.1-2\left(y-2\right)+y-4=0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}-9-2x-2+x-3=0\\3-2y+4+y-4=0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}-x-14=0\\-y+3=0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x=-14\\y=3\end{matrix}\right.\)
vậy D(-14;3)