Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Phương pháp: (P) cách đều B, C
TH1: BC//(P)
TH2: I ∈ (P)với I là trung điểm của BC.
Cách giải:
(P) cách đều B, C
TH1: BC//(P)
=> (P) đi qua O và nhận b → = ( 6 ; - 3 ; - 4 ) là 1 VTPT
TH2: I ∈ (P) với I là trung điểm của BC.
Dựa vào các đáp án ta chọn được đáp án B.
Chọn B
Gọi I là trung điểm của AB suy ra và (P) là mặt phẳng trung trực của đoạn AB.
Mặt phẳng (P) đi qua I và nhận làm vec tơ pháp tuyến có phương trình là:
Gọi J là trung điểm của AC suy ra và (Q) là mặt phẳng trung trực của đoạn AC
Mặt phẳng (Q) đi qua J và nhận làm vec tơ pháp tuyến có phương trình là:
Khi đó d = (P) ∩ (Q)
Ta có d có vectơ chỉ phương và đi qua M là nghiệm của hệ , ta chọn x = 4 suy ra y = 2 và z = 9/4. Vậy
Phương trình tham số của d là:
Ta thấy không cùng phương nên ba điểm A, B, C không thẳng hàng.
M cách đều hai điểm A, B nên điểm M nằm trên mặt trung trực của AB. M cách đều hai điểm B, C nên điểm M nằm trên mặt trung trực của B, C.
Do đó tập hợp tất cả các điểm m cách đều ba điểm A, B, C là giao tuyến của hai mặt trung trực của AB và BC.
Gọi (P), (Q) lần lượt là các mặt phẳng trung trực của AB và BC. K(0; 3/2; 1/2) là trung điểm AB; N(1/2; -1/2; 1) là trung điểm BC.
(P) đi qua K và nhận làm véctơ pháp tuyến nên (P): hay (P): 2x - y + z + 1 = 0
(Q) đi qua N và nhận làm véctơ pháp tuyến nên (Q): hay (Q): 3x - 5y +2z - 6 = 0
Ta có . Nên d có véctơ chỉ phương
Cho y = 0 ta sẽ tìm được x = -8, z = 15 nên (-8; 0; 15) ∈ d. Vậy .
Đáp án D.