K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2019

Ta thấy  không cùng phương nên ba điểm A, B, C không thẳng hàng.

M cách đều hai điểm A, B  nên điểm M nằm trên mặt trung trực của AB. M cách đều hai điểm B, C nên điểm M nằm trên mặt trung trực của B, C.

Do đó tập hợp tất cả các điểm m cách đều ba điểm A, B, C giao tuyến của hai mặt trung trực của AB và BC.

Gọi (P), (Q) lần lượt là các mặt phẳng trung trực của AB và BC. K(0; 3/2; 1/2) là trung điểm AB; N(1/2; -1/2; 1) là trung điểm BC.

(P) đi qua K và nhận  làm véctơ pháp tuyến nên (P):  hay (P): 2x - y + z + 1 = 0

(Q) đi qua N và nhận  làm véctơ pháp tuyến nên (Q):  hay (Q): 3x - 5y +2z - 6 = 0

Ta có Nên d có véctơ chỉ phương

Cho y = 0 ta sẽ tìm được x = -8, z = 15 nên (-8; 0; 15) ∈ d. Vậy .

8 tháng 4 2017

Đáp án A.

(loại B D).

Xét đáp án A ta có d qua M(-8;0;15)

14 tháng 10 2018

Đáp án D.

22 tháng 2 2017

Chọn B

Gọi I là trung điểm của AB suy ra  và (P) là mặt phẳng trung trực của đoạn AB.

Mặt phẳng (P) đi qua I và nhận  làm vec tơ pháp tuyến có phương trình là:

Gọi J là trung điểm của AC suy ra  và (Q) là mặt phẳng trung trực của đoạn AC

Mặt phẳng (Q) đi qua J và nhận  làm vec tơ pháp tuyến có phương trình là:

Khi đó d = (P) (Q)

Ta có d có vectơ chỉ phương  và đi qua M là nghiệm của hệ , ta chọn x = 4 suy ra y = 2 và z = 9/4. Vậy 

Phương trình tham số của d là:

21 tháng 6 2018

Đáp án A.

Ta có  

Suy ra phương trình mặt phẳng (ABC) là  5x -2y -z -6 =0

Do đó, điểm D(4;3;8) thuộc mặt phẳng (ABC).

Vậy có vô số mặt phẳng cách đều bốn điểm đã cho.

23 tháng 5 2019

Đáp án B.

12 tháng 5 2019

Đáp án B

Phương pháp: (P) cách đều  B, C

TH1: BC//(P)

TH2: I ∈ (P)với I là trung điểm của BC.

Cách giải:

(P) cách đều B, C

TH1: BC//(P)

=> (P) đi qua O và nhận  b → = ( 6 ; - 3 ; - 4 ) là 1 VTPT

TH2: I(P) với I là trung điểm của BC.

Dựa vào các đáp án ta chọn được đáp án B.

25 tháng 12 2017

Đáp án B.

16 tháng 5 2018

Đáp án D