Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Phương pháp:
- Đưa phương trình mặt phẳng (P) về dạng chỉ còn 1 tham số.
- (P) cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất ó d(I;(P)) max, trong đó: I là tâm mặt cầu (S).
Cách giải:
có tâm I(1;2;3) và bán kính R = 5
- (P) cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất <=> d(I;(P)) max, trong đó: I là tâm mặt cầu (S).
Ta có
Ta tìm giá trị lớn nhất của . Gọi m là giá trị của với c nào đó.
Ta có:
(*) có nghiệm
Khi đó
Đáp án B
Mặt cầu (S): x - 1 2 + y - 2 2 + z - 1 2 = 2 có tâm I(1;2;1), R = 2
Xét mặt phẳng thiết diện đi qua tâm I, hai tiếp điểm M, N và cắt d tại H.
Khi đó IH chính là khoảng cách từ điểm I(1;2;1) đến d
Điểm K(2;0;0) ∈ d => I K → = (1;2;1) => f(I;(d)) = I K → ; u d → u d → = 6
Suy ra
Gọi O là trung điểm của MN
Ta có
Đáp án A.
Ta có S : x + a 2 2 + y + b 2 2 + z + c 2 2 = a 2 + b 2 + c 2 4 - d có I - a 2 ; - b 2 ; - c 2
Vì I ∈ d ⇒ I 5 + t ; - 2 - 4 t ; - 1 - 4 t và (S) tiếp xúc với (P) nên d I ; P = R
3 . 5 + t - - 2 - 4 t - 3 . - 1 - 4 t - 1 3 2 + - 1 2 + - 3 2 = 19 ⇔ t + 1 = 1 ⇔ [ t = 0 t = 2
⇒ [ I ( 5 ; - 2 ; - 1 ) I ( 3 ; 6 ; 7 ) ⇒ [ a , b , c , d = - 10 ; 4 ; 2 ; 47 a , b , c , d = - 6 ; - 12 ; - 14 ; 75
Thử lại với a 2 + b 2 + c 2 4 - d = R 2 = 19 thì chỉ có trường hợp {-6;-12;-14;75} thỏa
Đáp án B
Xét S : x - 1 2 + y - 2 2 + z - 3 2 = 16 có tâm I(1;2;3) bán kính R = 4
Gọi O là hình chiếu của I trên mặt phẳng (P). Ta có S m i n ⇔ d I ; P m a x ⇔ I O m a x
Khi và chỉ khi I O ≡ I H với H là hình chiếu của I trên AB
⇒ I H → là vecto pháp tuyến của mặt phẳng (P) mà I A = I B ⇒ H là trung điểm AB
⇒ H ( 0 ; 1 ; 2 ) ⇒ I H → = ( - 1 ; - 1 ; - 1 ) ⇒ m p P là -x - y - z + 3 = 0.