K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2018

23 tháng 6 2018

Đáp án B

Phương pháp:

- Đưa phương trình mặt phẳng (P) về dạng chỉ còn 1 tham số.

- (P) cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất ó d(I;(P)) max, trong đó: I là tâm mặt cầu (S).

Cách giải:

có tâm  I(1;2;3) và bán kính R = 5

- (P) cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất <=> d(I;(P)) max, trong đó: I là tâm mặt cầu (S).

Ta có

Ta tìm giá trị lớn nhất của Gọi m là giá trị của  với c nào đó.

Ta có:

(*) có nghiệm 

Khi đó 

1 tháng 1 2020

18 tháng 2 2018

Đáp án B

Mặt cầu (S):  x - 1 2 + y - 2 2 + z - 1 2 = 2 có tâm I(1;2;1), R =  2

Xét mặt phẳng thiết diện đi qua tâm I, hai tiếp điểm M, N và cắt d tại H.

Khi đó IH chính là khoảng cách từ điểm I(1;2;1) đến d

Điểm K(2;0;0) ∈ d => I K → = (1;2;1) => f(I;(d)) = I K → ; u d → u d → = 6

Suy ra 

Gọi O là trung điểm của MN

Ta có 

13 tháng 8 2018

27 tháng 9 2018

4 tháng 1 2020


18 tháng 12 2018

Đáp án A.

Ta có S : x + a 2 2 + y + b 2 2 + z + c 2 2 = a 2 + b 2 + c 2 4 - d  có I - a 2 ; - b 2 ; - c 2  

Vì I ∈ d ⇒ I 5 + t ; - 2 - 4 t ; - 1 - 4 t  và (S) tiếp xúc với (P) nên d I ; P = R  

3 . 5 + t - - 2 - 4 t - 3 . - 1 - 4 t - 1 3 2 + - 1 2 + - 3 2 = 19 ⇔ t + 1 = 1 ⇔ [ t = 0 t = 2

⇒ [ I ( 5 ; - 2 ; - 1 ) I ( 3 ; 6 ; 7 ) ⇒ [ a , b , c , d = - 10 ; 4 ; 2 ; 47 a , b , c , d = - 6 ; - 12 ; - 14 ; 75   

Thử lại với a 2 + b 2 + c 2 4 - d = R 2 = 19  thì chỉ có trường hợp {-6;-12;-14;75} thỏa

27 tháng 6 2019

Đáp án B

Xét  S : x - 1 2 + y - 2 2 + z - 3 2 = 16 có tâm I(1;2;3) bán kính R = 4 

Gọi O là hình chiếu của I trên mặt phẳng (P). Ta có S m i n ⇔ d I ; P m a x ⇔ I O m a x  

Khi và chỉ khi I O ≡ I H  với H là hình chiếu của I trên AB

⇒ I H →  là vecto pháp tuyến của mặt phẳng (P) mà I A = I B ⇒ H  là trung điểm AB

⇒ H ( 0 ; 1 ; 2 ) ⇒ I H → = ( - 1 ; - 1 ; - 1 ) ⇒ m p P  là -x - y - z + 3 = 0.