K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2017

Chọn B

27 tháng 4 2018

Vì M thuộc đường trung trực của đoạn thẳng AB nên MA = MB.

Vì N thuộc đường trung trực của đoạn thẳng AB nên NA = NB.

+) Xét ∆AMN và ∆BMN có:

MA = MB ( chứng minh trên)

NA = NB (chứng minh trên)

MN chung

Suy ra: ∆AMN = ∆BMN (c.c.c) nên các khẳng định (A), (B), (C) sai, (D) đúng.

a: Xét ΔOMA và ΔOMB có

OM chung

MA=MB

OA=OB

Do đó: ΔOMA=ΔOMB

Xét ΔONA và ΔONB có

ON chung

NA=NB

OA=OB

Do đó: ΔONA=ΔONB

b: Ta có: OA=OB

nen O nằm tren đường trung trực của AB(1)

Ta có: MA=MB

nen M nằm trên đường trung trực của AB(2)

Ta có: NA=NB

nên N nằm trên đường trung trực của AB(3)

TỪ (1), (2)và (3) suy ra O,M,N thẳng hàng

c: Xét ΔAMN và ΔBMN có

AM=BM

MN chung

AN=BN

Do đó ΔAMN=ΔBMN

20 tháng 4 2017

Xét tg AMN và tg BMN có:

MN chung

MA = MB (gt)

NA = NB (gt)

=> tg AMN = tg BMN (c.c.c)

1) Giả thiết: \(\Delta AMN;\Delta BMN\) có: MA = MB và NA = NB.

Kết luận: tg AMN = tg BMN

2) \(\Delta AMN\)\(\Delta BMN\) có:

MN: cạnh chung

MA = MB (giả thiết)

NA = NB (giả thiết)

Do đó \(\Delta AMN=\Delta BMN\left(c.c.c\right)\)

Suy ra \(\widehat{AMN}=\widehat{BMN}\) (2 góc t/ư).

14 tháng 12 2021

bạn làm sai chỗ Kết luận: tg AMN = tg BMN VÌ ngta nói chứng minh góc chứ ko phải tg

18 tháng 11 2017

x O y A B . . M N

a) Xét \(\Delta\)OMA và \(\Delta\)OMB:

OA = OB (đề bài)

AM = BM (vì có cùng bán kính)

Cạnh OM chung

=> \(\Delta\)OMA = \(\Delta\)OMB (c.c.c)

Xét \(\Delta\)ONA và \(\Delta\)ONB

OA = OB (đề bài)

AN = BN (vì cò cùng bán kính)

Cạnh ON chung

=> \(\Delta\)ONA = \(\Delta\)ONB (c.c.c)

b) Ta có \(\Delta\)OMA = \(\Delta\)OMB (theo câu a)

=> ^AOM = ^BOM (2 góc tương ứng)

=> OM là tia phân giác của ^AOB

Lại có \(\Delta\)ONA = \(\Delta\)ONB (theo câu a)

=> ^AOM = ^BOM (2 góc tương ứng)

=> ON là tia phân giác của ^AOB

Mà mỗi góc chỉ có duy nhất một tia phân giác

=> OM và ON trùng nhau

hay O, M, N thẳng hàng (ĐPCM)

c) Xét \(\Delta\)AMN và \(\Delta\)BMN

AM = BM (vì có cùng bán kính)

AN = BN (vì có cùng bán kính)

cạnh MN chung

=> \(\Delta\)AMN = \(\Delta\)BMN (c.c.c)

d) Ta có \(\Delta\)AMN = \(\Delta\)BMN (theo câu c)

=> ^AMN = ^BMN (2 góc tương ứng)

=> MN là tia phân giác của ^AMB

18 tháng 11 2017

ko rõ lắm nhỉ

19 tháng 5 2022

Vì D nằm giữa A và C nên tia BD nằm giữa 2 tia BA và BC 

\(\Rightarrow\widehat{ABC}=\widehat{ABD}+\widehat{DBC}\)

\(\Rightarrow\widehat{DBC}=\widehat{ABC}-\widehat{ABD}=25^o\)