K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2019

Helpppppppppppppppppppp

17 tháng 12 2020

a/ \(\widehat{DCE}+\widehat{ECF}=180^o\)

=> \(\widehat{ECF}=90^o\)

Xét t/g DEC và t/g BFC có

EC = FC (GT)

\(\widehat{DCE}=\widehat{BCF}=90^o\)

DC = BC (do ABCD là hình vuông)

=> t/g DEC = t/g BFC (c.g.c)

=> DE = BF (2 cạnh t/ứ(

b/ Xét t/g BEH và t/g DEC có

\(\widehat{BEH}=\widehat{DEC}\) (đối đỉnh)

\(\widehat{EBF}=\widehat{EDC}\) (do t/g BFC = t/g DEC)

 \(\Rightarrow\Delta BEH\sim\Delta DEC\) (g.g)

=> \(\widehat{BHE}=\widehat{DCB}=90^o\)

=> \(DE\perp BF\)

Xét t/g BDF có

DE ⊥ BF

BC ⊥ DF

DE cắt BC tại E

=> E là trực tâm t/g BDF

=> .... đpcm

c/ Xét t/g CEF có CE = CF ; M là trung điểm EF

=> CM ⊥ EF

=> \(\widehat{KMC}=90^o\)

Tự cm OKMC làhcn

=> OC = KM => AO = KM

Mà AO // KM (cùng vuông góc vs BD)

=> AOMK là hbh

=> OM // AK

15 tháng 12 2017

46;08.90

19 tháng 8 2017

A B C D E F

Vì ABCD là hình bình hành nên nên AB = DC cà AB // DC hay AB = BE và AB // BE

=> Tg AEBD là hình bình hành => AE // BD => \(\widehat{EAB}=\widehat{ABD}\)(SLT)

CM tương tự ta cũng có tg ABDE là hình bình hành => AF // BD => \(\widehat{FAD}=\widehat{ADB}\)(SLT)

Tam giác \(ADB\) có \(\widehat{ADB}+\widehat{ABD}+\widehat{BAD}=180^0\)(DL tổng 3 góc của 1 tam giác)

Mà  \(\widehat{EAB}=\widehat{ABD}\)\(\widehat{FAD}=\widehat{ADB}\) (cmt) nên \(\widehat{EAB}+\widehat{FAD}+\widehat{BAD}=180^0\)

Hay F;A;E thẳng hàng 

Vì tứ giác AEBD là hình BH nên AE = BD ; tứ giác FABD là hình BH nên AF = BH 

Từ 2 điều trên suy ra AE = AF hay A là trung điểm của FE => CA là đường trung tuyến của tam giác ECF

Xét tam giác ECF có ED ; FB ; CA là các đường trung tuyến nên theo TC thì ED ; FB ; CA đồng quy (đpcm)