K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
3 tháng 6 2021

\(f'\left(x\right)=m^2x^4-mx^2+20x-\left(m^2-m-20\right)\)

Để hàm số đồng biến trên \(ℝ\)thì \(f'\left(x\right)\ge0,\)với mọi \(x\inℝ\).

Mà ta thấy \(f'\left(-1\right)=m^2-m-20-\left(m^2-m-20\right)=0\)

do đó \(x=-1\)là một điểm cực trị của hàm số \(f'\left(x\right)\).

Ta có: \(f''\left(x\right)=4m^2x^3-2mx+20\)

\(f''\left(-1\right)=0\Leftrightarrow-4m^2+2m+20=0\Leftrightarrow\orbr{\begin{cases}m=\frac{5}{2}\\m=-2\end{cases}}\).

Thử lại.

Với \(m=\frac{5}{2}\)\(f''\left(x\right)=25x^3-5x+20\)

\(f''\left(x\right)=0\Leftrightarrow x=-1\)

\(f'\left(-1\right)=0\)

do đó \(f'\left(x\right)\ge0\)thỏa mãn. 

Với \(m=-2\)\(f''\left(x\right)=16x^3+4x+20\)

\(f''\left(x\right)=0\Leftrightarrow x=-1\).

\(f'\left(-1\right)=0\)

do đó \(f'\left(x\right)\ge0\)thỏa mãn. 

Vậy tổng các giá trị của \(m\)là: \(\frac{5}{2}+\left(-2\right)=\frac{1}{2}\).

Chọn D. 

10 tháng 5 2022

lo

 

NV
30 tháng 10 2020

\(y'=m^2x^4-mx^2+20x-m^2+m+20\ge0\) ; \(\forall x\in R\)

\(\Leftrightarrow m^2\left(x^4-1\right)-m\left(x^2-1\right)+20\left(x+1\right)\ge0\)

\(\Leftrightarrow m^2\left(x^2+1\right)\left(x-1\right)\left(x+1\right)-m\left(x-1\right)\left(x+1\right)+20\left(x+1\right)\ge0\)

\(\Leftrightarrow\left(x+1\right)\left[m^2\left(x^2+1\right)\left(x-1\right)-m\left(x-1\right)+20\right]\ge0\) ;\(\forall x\in R\)

Do pt trên luôn có nghiệm \(x=-1\) nên nó phải là nghiệm bội chẵn

\(\Rightarrow m^2\left(x^2+1\right)\left(x-1\right)-m\left(x-1\right)+20=0\) có nghiệm bội lẻ \(x=-1\) (1)

Thay \(x=-1\) vào pt trên ta được:

\(-4m^2+2m+20=0\) \(\Leftrightarrow\left[{}\begin{matrix}m=-2\\m=\frac{5}{2}\end{matrix}\right.\)

Thay ngược 2 giá trị m vào (1) để kiểm tra xem có thể phân tích \(y'=\left(x+1\right)^2\left(ax^2+bx+c\right)\) thỏa mãn \(ax^2+bx+c\ge0\) với mọi x hay ko

19 tháng 12 2021

Chọn B

19 tháng 1 2022

Hỏi mãi chiếm hết cả web ko trả lời nữa