Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tự nhiên thứ nhất là \(x\), số tự nhiên thứ hai là \(y\) \(\left(x,y\in N\right)\)
Vì 4 lần số thứ hai cộng với 5 lần số thứ nhất bằng 18040 nên ta có: \(5x+4y=18040\left(1\right)\)
Vì 3 lần số thứ nhất hơn 2 lần số thứ hai là 2002 nên ta có: \(3x-2y=2002\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}5x+4y=18040\\3x-2y=2002\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x+4y=18040\\6x-4y=4004\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}11x=22044\\6x-4y=4004\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2004\\6.2004-4y=4004\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2004\\y=2005\end{matrix}\right.\) \(\left(tmđk\right)\)
Gọi số đã cho là \(\overline{ab}\) (a;b là các chữ số)
Theo bài ra, ta có:
\(\hept{\begin{cases}a+b=11\\\overline{ba}-\overline{ab}=27\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=11\\10b+a-\left(10a+b\right)=27\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=11\\9b-9a=27\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=11\\b-a=3\end{cases}}\Leftrightarrow\hept{\begin{cases}a=4\\b=7\end{cases}}\)(thỏa mãn)
Vậy số đã cho là 47
\(\)
ab
a+b+3.a.b=17
3a(1+3b)+(3b+1)=17.3+1
(3a+1)(3b+1)=17.3+1=52=13.4=52.1=2.26=
3a+1=13=> a=4; 3b+1=4 => b=1
(ab)=41; 41
3a+1=52=> a=17loai
3a+1=2=> loai
ds: ab=14 hoac 41
Gọi số cần tìm là ab (a,b ∈ N,1 ≤ a ≤ 9,0 ≤ b ≤ 9)
Theo đầu bài, ta có ab - ba = 45 <=> 10a + b - 10b - a = 45
<=> 9a - 9b = 45 <=> a - b = 5
Lại có a6b - ab = 240 <=> 100a + 60 + b - 10a - b = 240
<=> 90a = 180 <=> a = 2
<=> b = 2 - 5 = -3
Mà a,b ∈ N => Vô lí
Vậy không tồn tại số ab
a) Gọi 3 số tự nhiên lẻ liên tiếp theo thứ tự tăng dần lần lượt là: a,a+2,a+4
Theo đề bài ta có: \(\left(a+2\right)\left(a+4\right)-a\left(a+2\right)=132\)
\(\Leftrightarrow a^2+6a+8-a^2-2a=132\)
\(\Leftrightarrow4a=124\Leftrightarrow a=31\)
Vậy 3 số tự nhiên liên tiếp đó lần lượt là: 31,33,35
b) \(x-3\sqrt{x}+2=0\left(đk:x\ge0\right)\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}=2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=4\left(tm\right)\end{matrix}\right.\)
số lớn nhất có 3 chữ số: 999
số lẻ nhỏ nhất có 3 chữ số: 101
số thứ 2:
999-101=898