Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a,(1-1/2).(1-1/3).(1-1/4).(1-1/5)
=1/2.2/3.3/4.4/5
=1/5
b,(1-3/4).(1-3/7)....(1-3/97).(1-1/100)
=1/4. 4/7.7/10.....94/97.97/100
=1/100
1) Tính tổng:
a) \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{5}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}=\frac{1}{5}\)
b) \(\left(1-\frac{3}{4}\right)\left(1-\frac{3}{7}\right)\left(1-\frac{3}{10}\right)...\left(1-\frac{3}{97}\right)\left(1-\frac{3}{100}\right)=\frac{1}{4}.\frac{4}{7}.\frac{7}{10}...\frac{94}{97}.\frac{97}{100}=\frac{1}{100}\)
Giải:
a) \(\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right).\left(1-\dfrac{1}{5}\right)\)
\(=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}\)
\(=\dfrac{1.2.3.4}{2.3.4.5}\)
\(=\dfrac{1}{5}\)
b) \(\left(1-\dfrac{3}{4}\right).\left(1-\dfrac{3}{7}\right).\left(1-\dfrac{3}{10}\right).\left(1-\dfrac{3}{13}\right).....\left(1-\dfrac{3}{97}\right).\left(1-\dfrac{3}{100}\right)\)
\(=\dfrac{1}{4}.\dfrac{4}{7}.\dfrac{7}{10}.\dfrac{10}{13}.....\dfrac{94}{97}.\dfrac{97}{100}\)
\(=\dfrac{1.4.7.10.....94.97}{4.7.10.13.....97.100}\)
\(=\dfrac{1}{100}\)
Chúc bạn học tốt!
\(\left(1-\frac{3}{4}\right)\left(1-\frac{3}{7}\right)\left(1-\frac{3}{10}\right)...\left(1-\frac{3}{97}\right)\left(1-\frac{3}{100}\right)\)
\(=\frac{1}{4}.\frac{4}{7}.\frac{7}{10}.....\frac{94}{97}.\frac{97}{100}\)
\(=\frac{1.4.7.....94.97}{4.7.10.....97.100}\)
\(=\frac{1}{100}\)
1/3 + 1/7 + 1/13 + 1/21 + ... + 1/73 + 1/97 < 1/2 + 1/6 + 1/12 + 1/20 + ... + 1/72 + 1/90
<=> 1/3 + 1/7 + 1/13 + 1/21 + ... + 1/73 + 1/97 < 1/1*2 + 1/2*3 + 1/3*4 + 1/4*5 + ... + 1/8*9 + 1/9*10
<=> 1/3 + 1/7 + 1/13 + 1/21 + ... + 1/73 + 1/97 < 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/8 - 1/9 + 1/9 - 1/10
<=> 1/3 + 1/7 + 1/13 + 1/21 + ... + 1/73 + 1/97 < 1 - 1/10
<=> 1/3 + 1/7 + 1/13 + 1/21 + ... + 1/73 + 1/97 < 9/10 < 1
Vậy 1/3 + 1/7 + 1/13 + 1/21 + ... + 1/73 + 1/97 < 1
Sửa lại đề : Chứng minh \(A=\frac{1}{3}+\frac{1}{7}+\frac{1}{13}+....+\frac{1}{73}+\frac{1}{91}< 1\)
Ta có :
\(\frac{1}{3}=\frac{1}{1.2+1}< \frac{1}{1.2}\)
\(\frac{1}{7}=\frac{1}{2.3+1}< \frac{1}{2.3}\)
\(\frac{1}{13}=\frac{1}{3.4+1}< \frac{1}{3.4}\)
\(.....\)
\(\frac{1}{91}=\frac{1}{9.10+1}< \frac{1}{9.10}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}< 1\)(đpcm)
= 1/4 . 4/7 . 7/10 . 7/13 . ...... . 94/97 . 97/100
= 1/100
nhớ tk nha
a) \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).\left(1-\frac{1}{5}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}\)
\(=\frac{1}{5}\)
b) \(\left(1-\frac{3}{4}\right).\left(1-\frac{3}{7}\right).\left(1-\frac{3}{10}\right)........\left(1-\frac{3}{97}\right).\left(1-\frac{3}{100}\right)\)
\(=\frac{1}{4}.\frac{4}{7}.\frac{7}{10}.......\frac{94}{97}.\frac{97}{100}\)
\(=\frac{1}{100}\)