Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}=\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}=\)
= 1-1/8 = 7/8
b/ = (17/9+1/9)+(19/13+7/13)+(14/6+10/6) = 18/9 + 26/13 + 24/6 = 2+2+4 = 8
\(=\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{6}\right)+\left(1-\dfrac{1}{12}\right)+...+\left(1-\dfrac{1}{90}\right)\\ =\left(1+1+...+1\right)-\left(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{90}\right)\\ =9-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{9\cdot10}\right)\\ =9-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\\ =9-\left(1-\dfrac{1}{10}\right)=9-\dfrac{9}{10}=\dfrac{81}{10}\)
1/2+5/6+11/12+19/20+29/30+41/42+55/56+71/72+89/90
=(1-1/2)+(1-1/6)+(1-1/12)+(1-1/30)+(1-1/42)+(1-1/56)+(1-1/72)+(1-1/90)
=(1+1+1+1+1+1+1+1+1)-(1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90)
Ta có : A=1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90
A=1/1.2+1/2.3+1/3.4=1/4.5+1/5.6+1/6.7+1/7.8+1/8.9+1/9.10
A=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10
A=1-1/10
Thay vào ta có
=9-9/10
=81/10
Đầy đủ luôn nhé
a) = ( 5,4 - 4,4 ) + ( 6,5 - 5,5 ) + ( 7,6 - 6,6 ) + ( 8,7 - 7,7 )
= 1 + 1 + 1 + 1
= 4
b) = 9/10
A=1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8
A=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8
A=1-1/8
A=7/8
GOOD LUCK
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....-\frac{1}{8}\)
\(A=1-\frac{1}{8}=\frac{7}{8}\)
CÁC BẠN ƠI GIÚP MÌNH !
BẠN NÀO LÀM ĐƯỢC THÌ MÌNH K CHO NHÉ !
A=1/6 +1/12 +1/20 +1/30 +1/42
=1/2.3 +1/3.4 +1/4.5 +1/5.6 +1/6.7
=1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7
=1/2 - 1/7 = 5/14
Có công thức \(\dfrac{x}{a\left(a+x\right)}=\dfrac{1}{a}-\dfrac{1}{a+x}\) nhé!
Ví dụ: \(\dfrac{2}{2.4}=\dfrac{1}{2}-\dfrac{1}{4}\)
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
\(=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{7}-\dfrac{1}{8}\)
\(=1-\dfrac{1}{8}=\dfrac{7}{8}\)
Dấu . tức là nhân nhé!
M = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)
M = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
M = 1 -\(\frac{1}{9}\)=\(\frac{8}{9}\)
Biểu thức = \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)
= \(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+..+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)
= \(\dfrac{1}{2}-\dfrac{1}{10}=\dfrac{2}{5}\)
Đặt \(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+......+\frac{1}{56}\)
\(\Rightarrow A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+........+\frac{1}{7.8}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{7}-\frac{1}{8}\)
\(\Rightarrow A=1-\frac{1}{8}\)
\(\Rightarrow A=\frac{7}{8}\)