Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)
M = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
M = 1 -\(\frac{1}{9}\)=\(\frac{8}{9}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}\)
\(=\frac{4}{10}=\frac{2}{5}\)
Ủng hộ mk nha !!! ^_^
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\)
\(=\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+....+\frac{1}{9x10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}=\frac{5}{10}-\frac{1}{10}=\frac{4}{10}=\frac{2}{5}\)
= 1- ( 1/2 +1/6 +1/12+1/20+1/30+1/42+1/56+1/72+1/89)
=1-721/801
= 80/801
Đề hơi
sai !!
SỬa số 1/89 thành 1/90 hình như ms đúng quy luật !!
\(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)
\(=\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)
\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
\(=\frac{1}{3}-\frac{1}{9}\)
\(=\frac{3}{9}-\frac{1}{9}\)
\(=\frac{2}{9}\)
= 1/3 x 4 + 1 / 4 x 5 + 1 / 5x6 + 1 / 6 x 7 + 1 / 7 x 8 + 1 / 8 x 9
= 1/3 - 1 / 4 + 1 /4 - 1/5 + 1/5 - 1/6 + ................... + 1/8 - 1/9
= 1/3 - 1/9
= 2/9
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{30}+...+\frac{1}{72}+\frac{1}{81}\)
\(A=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{8\times9}+\frac{1}{81}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{81}\)
\(A=1-\frac{1}{9}+\frac{1}{81}=\frac{73}{81}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{81}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}+\frac{1}{81}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{81}\)
\(=1-\frac{1}{9}+\frac{1}{81}\)
\(=\frac{8}{9}+\frac{1}{81}\)
\(=\frac{73}{81}\)
\(=\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{6}\right)+\left(1-\dfrac{1}{12}\right)+...+\left(1-\dfrac{1}{90}\right)\\ =\left(1+1+1+1+1+1+1+1+1\right)-\left(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{90}\right)\\ =9-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{9\cdot10}\right)\\ =9-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\\ =9-\left(1-\dfrac{1}{10}\right)=9-\dfrac{9}{10}=\dfrac{81}{10}\)
a) \(\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)
\(=1-\frac{1}{6}+1-\frac{1}{12}+...+1-\frac{1}{90}\)
\(=\left(1+1+1+...+1\right)-\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\right)\)
\(=\left(1+1+1+...+1\right)-\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\right)\)
Từ 2 đến 9 có : ( 9 - 2 ) / 1 + 1 = 8 ( số hạng ) => có 8 số 1
\(\Rightarrow8-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=8-\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=8-\frac{2}{5}=\frac{38}{5}\)
b) \(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+...+\frac{109}{110}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+...+1-\frac{1}{110}\)
\(=\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\right)\)
\(=\left(1+1+...+1\right)-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{10\cdot11}\right)\)
Từ 1 đến 10 có : ( 10 - 1 ) / 1 + 1 = 10 ( số hạng ) => có 10 số 1
\(\Rightarrow10-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(=10-\left(1-\frac{1}{11}\right)\)
\(=10-\frac{10}{11}=\frac{100}{11}\)
\(=\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{6}\right)+\left(1-\dfrac{1}{12}\right)+...+\left(1-\dfrac{1}{90}\right)\\ =\left(1+1+...+1\right)-\left(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{90}\right)\\ =9-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{9\cdot10}\right)\\ =9-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\\ =9-\left(1-\dfrac{1}{10}\right)=9-\dfrac{9}{10}=\dfrac{81}{10}\)
Biểu thức = \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)
= \(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+..+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)
= \(\dfrac{1}{2}-\dfrac{1}{10}=\dfrac{2}{5}\)