K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2018

13 tháng 3 2016

bài 2 :338350

14 tháng 10 2018

5 tháng 7 2019

AH
Akai Haruma
Giáo viên
8 tháng 1 2017

Lời giải:

\(A=a_1a_2+a_2a_3+....+a_{n-1}a_n+a_na_1=0\)

Nếu $n$ lẻ, ta thấy tổng $A$ gồm lẻ số hạng, mỗi số hạng có giá trị $1$ hoặc $-1$ nên $A$ lẻ \(\Rightarrow A\neq 0\) (vô lý)

Do đó $n$ chẵn. Nếu $n$ có dạng $4k+2$. Vì $A=0$ nên trong $4k+2$ số hạng trên sẽ có $2k+1$ số có giá trị là $1$ và $2k+1$ số có giá trị $-1$. Vì mỗi số $a_i$ trong $A$ xuất hiện $2$ lần nên \(a_1a_2a_2a_3....a_{n-1}a_na_{n}a_{1}=(a_1a_2...a_n)^2=1^{2k+1}(-1)^{2k+1}=-1\) (vô lý)

Do đó $n$ phải có dạng $4k$, tức là $n$ chia hết cho $4$ (đpcm)

17 tháng 4 2016

Ta gọi A=1.2+2.3+3.4+...+n.(n+1)

          3A=1.2(3-0)+2.3(4-1)+3.4(5-2)+n.(n+1)(n+2-n+1)

               =[1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)]-[0.1.2+1.2.3+2.3.4+...+(n-1)n(n+1)]

               =n(n+1)(n+2)

=>         A=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

Vậy 1.2+2.3+3.4+...+n(n+1)=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

17 tháng 4 2016

nhác viết quá

17 tháng 2 2016

Bài 2:

a) Ta có:

\(S=1-3+3^2-3^3+3^4-3^5+3^6-3^7+...+3^{96}-3^{97}+3^{98}-3^{99}\)

\(=\left(1-3+3^2-3^3\right)+\left(3^4-3^5+3^6-3^7\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\)

\(=1.\left(1-3+3^2-3^3\right)+3^4.\left(1-3+3^2-3^3\right)+...+3^{96}.\left(1-3+3^2-3^3\right)\)

\(=\left(1+3^4+...+3^{96}\right).\left(1-3+3^2-3^3\right)\)

\(=\left(1+3^4+...+3^{96}\right).\left(-20\right)\) \(\text{⋮}\) \(-20\)

Vậy \(S\) \(\text{⋮}\) \(-20\)

17 tháng 2 2016

Bài 1:

Ta có:

\(A=\left(5m^2-8m^2-9m^2\right).\left(-n^3+4n^3\right)\)

\(=\left[\left(5-8-9\right).m^2\right].\left[\left(-1+4\right).n^3\right]\)

\(=\left(-12\right).m^2.3.n^3\)

\(=\left(m^2.3\right).\left[\left(-12\right)n^3\right]\)

Xét: \(m^2\ge0\) với V m

3>0 nên \(m^2.3\ge0\) với V m

Như vậy để \(A\ge0\) thì \(\left(-12\right)n^3\ge0\)

-12 < 0 nên nếu \(\left(-12\right)n^3\ge0\) thì \(n^3<0\Rightarrow n<0\)

Vậy với n<0 và mọi m thì \(A\ge0\)

 

18 tháng 3 2016

Sử dụng phương pháp quy nạp toán học 
Với n = 1, ta có: 
1 = (1 + 1)/2 (đúng) 
Giả sử mệnh đề đúng với n = k >= 1 (k thuộc N*), tức là: 
1 + 2 + 3 + 4 +.......+ k = k(1 + k)/2 
Ta sẽ chứng minh mệnh đề đúng với n = k + 1, tức là: 
1 + 2 + 3 + 4 + .......+ k +1 = (k + 1)(k + 2)/2 (*) 
Biến đổi tương đương, ta có: 
(*) <=> 1 + 2 + 3 + 4 +......+ k + k + 1 = (k + 1)(k + 2)/2 
<=> (1 + 2 + 3 + 4 +......+ k) + k + 1 = (k + 1)(k + 2)/2 
<=> k(k + 1)/2 + k + 1 = (k + 1)(k + 2)/2 
<=> (k + 1)(k/2 + 1) = (k + 1)(k + 2)/2 (đúng) 
Đẳng thức trên đúng 
Vậy theo nguyên lý quy nạp, ta chứng minh được mệnh đề: 
1 +2 + 3 + 4 +.......+ n = n(1 + n)/2

18 tháng 3 2016

Đặt biểu thức là (*)

Với n=1 

=> (*)<=> 1=\(\frac{1.\left(1+1\right)}{2}\) 

Vậy với n=1 ( đúng )

Giả sử (*) đúng với n=k

=> (*) <=> 1+2+3+...+k = \(\frac{k\left(k+1\right)}{2}\)

Ta chứng minh n=k+1

Thật vậy n=k+1 thì

(*) <=> 1+3+3+...+k+k+1 = \(\frac{k+1.\left(k+2\right)}{2}\)

<=> \(\frac{K\left(k+1\right)}{2}+K+1=\frac{\left(k+1\right).\left(k+2\right)}{2}\)

<=> \(\frac{k}{2}+1=\frac{k+2}{2}\)

<=>\(\frac{k}{2}+1=\frac{k}{2}+1\left(đúng\right)\)

Vậy (*) đúng với n=k+1

Vậy (*) đúng với mọi số tự nhiên n ϵ N ( Khác 0 )

 

19 tháng 2 2016

11,

a, 4x-3\(\vdots\) x-2 1

    x-2\(\vdots\) x-2\(\Rightarrow\) 4(x-2)\(\vdots\) x-2\(\Rightarrow\) 4x-8\(\vdots\) x-2 2

Từ 12 ta có:

(4x-3)-(4x-8)\(\vdots\) x-2

\(\Rightarrow\) 4x-3-4x+8\(\vdots\) x-2

\(\Rightarrow\)       5       \(\vdots\) x-2

\(\Rightarrow\) x-2\(\in\) Ư(5)

\(\Rightarrow\) x-2\(\in\){-5;-1;1;5}

\(\Rightarrow\) x\(\in\) {-3;1;3;7}

Vậy......

Phần b và c làm tương tự như phần a pn nhé! haha

18 tháng 4 2016

37! = 1.2...36.37

Trong tích trên:

+ Có 3 thừa số tròn chục: 10, 20, 30

+ Có 3 thừa số 5; 15; 35. Các số này khi nhân với 1 số chẵn bất kỳ (ví dụ 2, 12, 22) cho kết quả là số có tận cùng là 0

+ Có một thừa số 25. Số 25 x 4 = 100

Vậy 37! chứa tích 10. 20 . 30. (5.2) . (15.12). (35.22) . (25.4)

⇒ 37! có tận cùng 8 chữ số 0

18 tháng 4 2016

37! = 1.2...36.37

Trong tích trên:

+ Có 3 thừa số tròn chục: 10, 20, 30

+ Có 3 thừa số 5; 15; 35. Các số này khi nhân với 1 số chẵn bất kỳ (ví dụ 2, 12, 22) cho kết quả là số có tận cùng là 0

+ Có một thừa số 25. Số 25 x 4 = 100

Vậy 37! chứa tích 10. 20 . 30. (5.2) . (15.12). (35.22) . (25.4)

⇒ 37! có tận cùng 8 chữ số 0